Answer:
Explanation:
a)
Firstly to calculate the total mass of the can before the metal was lowered we need to add the mass of the eureka can and the mass of the water in the can. We don't know the mass of the water but we can easily find if we know the volume of the can. In order to calculate the volume we would have to multiply the area of the cross section by the height. So we do the following.
100
x 10cm = 1000
Now in order to find the mass that water has in this case we have to multiply the water's density by the volume, and so we get....
x 1000
= 1000g or 1kg
Knowing this, we now can calculate the total mass of the can before the metal was lowered, by adding the mass of the water to the mass of the can. So we get....
1000g + 100g = 1100g or 1.1kg
b)
The volume of the water that over flowed will be equal to the volume of the metal piece (since when we add the metal piece, the metal piece will force out the same volume of water as itself, to understand this more deeply you can read the about "Archimedes principle"). Knowing this we just have to calculate the volume of the metal piece an that will be the answer. So this time in order to find volume we will have to divide the total mass of the metal piece by its density. So we get....
20g ÷
= 2.5 
c)
Now to find out the total mass of the can after the metal piece was lowered we would have to add the mass of the can itself, mass of the water inside the can, and the mass of the metal piece. We know the mass of the can, and the metal piece but we don't know the mass of the water because when we lowered the metal piece some of the water overflowed, and as a result the mass of the water changed. So now we just have to find the mass of the water in the can keeping in mind the fact that 2.5
overflowed. So now we the same process as in number a) just with a few adjustments.
x (1000
- 2.5
) = 997.5g
So now that we know the mass of the water in the can after we added the metal piece we can add all the three masses together (the mass of the can. the mass of the water, and the mass of the metal piece) and get the answer.
100g + 997.5g + 20g = 1117.5g or 1.1175kg
Molecules in the solid phase have the least amount of energy, while gas particles have the greatest amount of energy. The temperature of a substance is a measure of the average kinetic energy of the particles.
Answer:
the propagation velocity of the wave is 274.2 m/s
Explanation:
Given;
length of the string, L = 1.5 m
mass of the string, m = 0.002 kg
Tension of the string, T = 100 N
wavelength, λ = 1.5 m
The propagation velocity of the wave is calculated as;

Therefore, the propagation velocity of the wave is 274.2 m/s
1 newton is the force needed to accelerate 1 kilogram of mass
at the rate of 1 meter per second² .
1 N = 1 kg-m/s² .
It's a force equal to roughly 3.6 ounces.
Explanation:
Magnet: It has two poles: South pole and North pole.
Magnetic field lines are stronger near the poles of the magnet.
Same poles repel each other. There is a magnetic force of repulsion between the same poles. North- North poles repel each other.
Unlike poles attract each other. There is magnetic force of attraction between the opposite poles. South- North poles attract each other.
Mono poles cannot exist.
From the given statements, the magnetic poles are described by:
A north pole must exist with a south pole.
Two south poles placed near each other will repel each other.
A north pole and a south pole placed near each other will attract each other.