OA bloom is smaller than a bar
Answer:
1790 μrad.
Explanation:
Young's modulus, E is given as 10000 ksi,
μ is given as 0.33,
Inside diameter, d = 54 in,
Thickness, t = 1 in,
Pressure, p = 794 psi = 0.794 ksi
To determine shear strain, longitudinal strain and circumferential strain will be evaluated,
Longitudinal strain, eL = (pd/4tE)(1 - 2μ)
eL = (0.794 x 54)(1 - 0.66)/(4 x 1 x 10000)
eL = 3.64 x 10-⁴ radians
Circumferential strain , eH = (pd/4tE)(2-μ)
eH = (0.794 x 54)(2 - 0.33)/(4 x 1 x 10000)
eH = 1.79 x 10-³ radians
The maximum shear strain is 1790 μrad.
Answer:
The kinetic energy of A is twice the kinetic energy of B
Explanation:
Answer:
a) Tբ = 151.8°C
b) ΔV = - 0.194 m³
c) The T-V diagram is sketched in the image attached.
Explanation:
Using steam tables,
At the given pressure of 0.5 MPa, the saturation temperature is the final temperature.
Right from the steam tables (A-5) with a little interpolation, Tբ = 151.793°C
b) The volume change
Using data from A-5 and A-6 of the steam tables,
The volume change will be calculated from the mass (0.58 kg), the initial specific volume (αᵢ) and the final specific volume
(αբ) (which is calculated from the final quality and the consituents of the specific volumes).
ΔV = m(αբ - αᵢ)
αբ = αₗ + q(αₗᵥ) = αₗ + q (αᵥ - αₗ)
q = 0.5, αₗ = 0.00109 m³/kg, αᵥ = 0.3748 m³/kg
αբ = 0.00109 + 0.5(0.3748 - 0.00109)
αբ = 0.187945 m³/kg
αᵢ = 0.5226 m³/kg
ΔV = 0.58 (0.187945 - 0.5226) = - 0.194 m³
c) The T-V diagram is sketched in the image attached