Answer:
Explanation:
<u>1) Equilibrium equation (given):</u>
- 2CH₂Cl₂ (g) ⇄ CH₄ (g) + CCl₄ (g)
<u>2) Write the concentration changes when some concentration, A, of CH₂Cl₂ (g) sample is introduced into an evacuated (empty) vessel:</u>
- 2CH₂Cl₂ (g) ⇄ CH₄ (g) + CCl₄ (g)
A - x x x
<u>3) Replace x with the known (found) equilibrium concentraion of CCl₄ (g) of 0.348 M</u>
- 2CH₂Cl₂ (g) ⇄ CH₄ (g) + CCl₄ (g)
A - 0.3485 0.348 0.348
<u>4) Write the equilibrium constant equation, replace the known values and solve for the unknown (A):</u>
- Kc = [ CH₄ (g) ] [ CCl₄ (g) ] / [ CH₂Cl₂ (g) ]²
- A² = 56.0 / 0.348² = 462.
<em>K</em> = 2.4 × 10^(-72)
<em>Step 1</em>. Determine the <em>value of n
</em>
Zn^(2+) + 2e^(-) → Zn
2Cl^(-) → Cl_2 + 2e^(-)
Zn^(2+) + 2Cl^(-) → Zn + Cl_2
∴ <em>n</em> = 2
<em>Step 2</em>. Calculate <em>K</em>
log<em>K</em> = <em>nE</em>°/0.0592 V = [2 × (-2.12 V)]/0.0592 V = -71.62
<em>K</em> = 10^(-71.62) = 2.4 × 10^(-72)
Answer : The value of
at this temperature is 66.7
Explanation : Given,
Pressure of
at equilibrium = 0.348 atm
Pressure of
at equilibrium = 0.441 atm
Pressure of
at equilibrium = 10.24 atm
The balanced equilibrium reaction is,

The expression of equilibrium constant
for the reaction will be:

Now put all the values in this expression, we get :


Therefore, the value of
at this temperature is 66.7