Answer: Partial pressure of nitrogen and xenon are 288mmHg and 548 mmHg respectively.
Explanation:
The partial pressure of a gas is given by Raoult's law, which is:

where,
= partial pressure of substance A
= total pressure
= mole fraction of substance A
We are given:


Mole fraction of a substance is given by:

And,

Mole fraction of nitrogen is given as:

Molar mass of
= 28 g/mol
Molar mass of
= g/mol
Putting values in above equation, we get:


To calculate the mole fraction of xenon, we use the equation:



Thus partial pressure of nitrogen and xenon are 288mmHg and 548 mmHg respectively.
Answer:

Explanation:
It is given that,
Initially, the electron is in n = 7 energy level. When it relaxes to a lower energy level, emitting light of 397 nm. We need to find the value of n for the level to which the electron relaxed. It can be calculate using the formula as :


R = Rydberg constant, 

Solving above equation we get the value of final n is,

or

So, it will relax in the n = 2. Hence, this is the required solution.
Yes, even light rays can vary in wavelength and frequency, if the length of the ray is sorter, it becomes more energetic and has a higher frequency. If you're talking about a ray tracing diagram for lenses or mirrors, the length of the ray doesn't really matter unless you're finding the path length but there are some procedures for that too. Let me know if I missed what you were asking.
Answer:
¿Qué estás intentando hoy?
Explanation:
Answer:
I believe whale fossils were found.