1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Lilit [14]
3 years ago
8

Spiderman, whose mass is 70.0 kg, is dangling on the free end of a 12.2-m-long rope, the other end of which is fixed to a tree l

imb above. By repeatedly bending at the waist, he is able to get the rope in motion, eventually getting it to swing enough that he can reach a ledge when the rope makes a θ = 58.4° angle with the vertical. How much work was done by the gravitational force on Spiderman in this maneuver?
Physics
1 answer:
Lana71 [14]3 years ago
5 0

Answer:

U = -3978.8 J

Explanation:

The work of the gravitational force U just depends of the heigth and is calculated as:

U = -mgh

Where m is the mass, g is the gravitational acceleration and h the alture.

for calculate the alture we will use the following equation:

h = L-Lcos(θ)

Where L is the large of the rope and θ is the angle.

Replacing data:

h = 12.2-12.2cos(58.4)

h = 5.8 m

Finally U is equal to:

U = -70(9.8)(5.8)

U = -3,978.8 J

You might be interested in
Two particles, each of charge Q, are fixed at opposite corners of a square that lies in the plane of the page. A positive test c
amid [387]

Answer:

The magnitude of the net force is √2F.

Explanation:

Since the two particles have the same charge Q, they exert the same force on the test charge; both attractive or repulsive. So, the angle between the two forces is 90° in any case. Now, as we know the magnitude of these forces and that they form a 90° angle, we can use the Pythagorean Theorem to calculate the magnitude of the resultant net force:

F_N=\sqrt{F^{2}+F^{2}}\\\\F_N=\sqrt{2F^{2}}\\\\F_N=\sqrt{2}F

Then, it means that the net force acting on the test charge has a magnitude of √2F.

7 0
3 years ago
A moving car has momentum. if it moves twice as fast its momentum is ____________ as much
Nikolay [14]
It's momentum is twice as much.
3 0
3 years ago
How is the magnetic force on a particle moving in a magnetic field different from gravitational and electric forces.
harina [27]

Answer:

The magnetic force on a free moving charge depends on the velocity of the charge and the magnetic field, direction of the force is given by the right hand rule. While gravitational depends on the mass and distance of the moving particle and electric forces depends on the magnitude of the charge and distance of separation.

Explanation:

The magnetic force on a free moving charge depends on the velocity of the charge and the magnetic field and direction of the force is given by the right hand rule. While gravitational depends on the mass and distance of the moving particle and electric forces depends on the magnitude of the charge and distance of separation.

The magnetic force is given by the charge times the vector product of velocity and magnetic field. While gravitational force is given by the square of the particle mass divided by the square its distance of separation. Also electric forces is given by the square of the charge magnitude divided by the square its distance separation.

4 0
2 years ago
a bullet moving with a velocity of 100m/s pierce a block of wood and moves out with a velocityof 10 m/s.if the thickness of the
erma4kov [3.2K]

The emerging velocity of the bullet is <u>71 m/s.</u>

The bullet of mass <em>m</em> moving with a velocity <em>u</em>  has kinetic energy. When it pierces the block of wood, the block exerts a force of friction on the bullet. As the bullet passes through the block, work is done against the resistive forces exerted on the bullet by the block. This results in the reduction of the bullet's kinetic energy. The bullet has a speed <em>v</em> when it emerges from the block.

If the block exerts a resistive force <em>F</em> on the bullet and the thickness of the block is <em>x</em> then, the work done by the resistive force is given by,

W=Fx

This is equal to the change in the bullet's kinetic energy.

W=Fx=\frac{1}{2} m(u^2-v^2)......(1)

If the thickness of the block is reduced by one-half, the bullet emerges out with a velocity v<em>₁.</em>

Assuming the same resistive forces to act on the bullet,

F(\frac{x}{2} )=\frac{1}{2} m(u^2-v_1^2)......(2)

Divide equation (2) by equation (1) and simplify for v<em>₁.</em>

\frac{\frac{Fx}{2} }{Fx} =\frac{(u^2-v_1^2)}{(u^2-v^2)} \\\frac{100^2-v_1^2}{100^2-10^2} =\frac{1}{2} \\v_1^2=5050\\v_1=71.06 m/s

Thus the speed of the bullet is 71 m/s


3 0
3 years ago
Bryce, a mouse lover, keeps his four pet mice in a roomy cage, where they spend much of their spare time (when they are not slee
user100 [1]

Answer:

I₁ = (7.78 i ^ - 6.71 j ^) 10⁻³ J s ,  I₂ = (-12.5 i ^ -14.6 j ^) 10⁻³ J s ,  I₃ = (19.1i ^ + 18.6 j ^) 10⁻³ J s  and I₄ = (-9.14i ^ + 7.24 j ^) 10⁻³ J s

Explanation:

The impulse is equal to the variation of the moment, to apply this relationship to our case, we will assume that initially the mouse was at rest

    I = Δp = m v_{f} -m v₀

    I = m (v_{f}  -v₀)

Bold indicates vector quantities, let's calculate the momentum of each mouse in for the x and y axes

We recommend bringing all units to the SI system

Mouse 1.

It has a mass of 22.3 g = 22.3 10⁻³ kg, a final velocity of (v = 0.349 i ^ - 0.301 j ^) m / s with an initial velocity of zero

    Iₓ = m (v_{fx}  - v₀ₓ)

    Iₓ = 22.3 10⁻³ (0.349 -0)

    Iₓ = 7.78 10⁻³ J s

   I_{y} = m (v_{fy}  -v_{oy} )

   I_{y} = 22.3 10⁻³ (-0.301)

   I_{y} = -6.71 10⁻³ J s

   I₁ = (7.78 i ^ - 6.71 j ^) 10⁻³ J s

Mouse 2

Mass 17.9 g = 17.9 10⁻³ kg

Speed ​​(-0.699 i ^ - 0.815 j ^) m / s

    Iₓ = m (v_{fx}  - v₀ₓ)

    Iₓ = 17.9 10⁻³ (-0.699 -0)

    Iₓ = -12.5 10⁻³ J s

    I_{y} = 17.9 10⁻³ (-0.815 - 0)

    I_{y} = -14.6 10⁻³ J s

   I₂ = (-12.5 i ^ -14.6 j ^) 10⁻³ J s

Mouse 3

Mass 19.1 g = 19.1 10⁻³ kg

Speed ​​(0.745i ^ + 0.975 j ^) m / s

    Iₓ = 19.1 10⁻³ (0.745 -0)

    Iₓ = 14.2 10⁻³ J s

    I_{y} = 19.1 10⁻³(0.975 -0)

    I_{y} = 18.6 10⁻³ J s

    I₃ = (19.1i ^ + 18.6 j ^) 10⁻³ J s

Mouse 4

Mass 10.1 g = 10.1 10⁻³ kg

Speed ​​(-0.905i ^ + 0.717j ^) m / s

    Iₓ = 10.1 10⁻³ (-0.905 -0)

    Iₓ = -9.14 10⁻³ J s

    I_{y} = 10.1 10⁻³ (0.717 -0)

    I_{y} = 7.24 10⁻³ J s

   I₄ = (-9.14i ^ + 7.24 j ^) 10⁻³ J s

8 0
3 years ago
Other questions:
  • The product side of a chemical reaction is shown. → 7Ti2(SO4)3 Which number represents a coefficient?
    10·2 answers
  • when you hold a warm bowl of soup the temperature of the palms of your hands increases this is an example of
    7·1 answer
  • A maintenance worker wants to torque an engine bolt to 65.0 N m. If the torque wrench is 35cm in length, what is force applied t
    12·1 answer
  • A plane is flying 2400 miles from a to
    7·1 answer
  • When the IMA is compared to AMA in the real world, _____.
    12·2 answers
  • you (60 kg) are standing in a (500 kg) elevator that is moving upwards from a ground floor on a building what is the power ratin
    5·1 answer
  • oscillating spring mass systems can be used to experimentally determine an unknown mass without using a mass balance. a student
    14·1 answer
  • TRUE OR FALSE?
    6·1 answer
  • What are the limitations of using solar panels?​
    13·1 answer
  • A mixture of sand, salt, iron and saw dust is given to you. You are asked to prove it is a mixture. Explain how you could possib
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!