Answer: Approximately 3.65 hours
Explanation:
55 km/h x 3.65 hrs = 200.75 Km/h
Answer: 3.48g
Explanation:
here, we will be using conservation of momentum to solve the problem. i.e the total momentum remains unchanged, unless an external force acts on the system. We'll in thus question, there is no external force acting in the system.
Remember, momentum = mass * velocity, then
mass of blood * velocity of blood = combined mass of subject and pallet * velocity of subject and pallet
Velocity of blood = 56.5cm = 0.565m
mass of blood * 0.565 = 54kg * (0.000063/0.160)
mass of blood * 0.565 = 54 * 0.00039375
mass of blood * 0.565 = 0.001969
mass of blood = 0.00348kg
Thus, the mass of blood that leaves the heart is 3.48g
Answer:
r = 4.24x10⁴ km.
Explanation:
To find the radius of such an orbit we need to use Kepler's third law:

<em>where T₁: is the orbital period of the geosynchronous Earth satellite = 1 d, T₂: is the orbital period of the moon = 0.07481 y, r₁: is the radius of such an orbit and r₂: is the orbital radius of the moon = 3.84x10⁵ km. </em>
From equation (1), r₁ is:
Therefore, the radius of such an orbit is 4.24x10⁴ km.
I hope it helps you!
Mass and distance
force /pull of gravity decreases with the increase in separation between the two bodies
the amount of gravity an object possesses is proportional to the mass of that object.
Kinetic energy of pieces A and B are 2724 Joule and 5176 Joule respectively.
<h3>What is the relation between the masses of A and B?</h3>
Mass of piece B = Mb
- Velocities of pieces A and B are Va and Vb respectively.
- As per conservation of momentum,
Ma×Va = Mb×Vb
So, 1.9Mb × Va = Mb×Vb
=> 1.9Va = Vb
<h3>What are the kinetic energy of piece A and B?</h3>
- Expression of kinetic energy of piece A = 1/2 × Ma × Va²
- Kinetic energy of piece B = 1/2 × Mb × Vb²
- Total kinetic energy= 7900J
=>1/2 × Ma × Va² + 1/2 × Mb × Vb² = 7900
=> 1/2 × Ma × Va² + 1/2 × (Ma/1.9) × (1.9Va)² = 7900
=> 1/2 × Ma × Va² ×(1+1.9) = 7900 j
=> 1/2 × Ma × Va² = 7900/2.9 = 2724 Joule
- Kinetic energy of piece B = 7900 - 2724 = 5176 Joule
Thus, we can conclude that the kinetic energy of piece A and B are 2724 Joule and 5176 Joule respectively.
Learn more about the kinetic energy here:
brainly.com/question/25959744
#SPJ1