Answer:
Conservation of Energy: the total energy of the system is constant. Conservation of Momentum: the mass times the velocity of the center of mass is constant. Conservation of Angular Momentum: The total angular momentum of the system is constant.
Explanation:
none
Change the 8 pounds to kilograms (divide it by 2.2). Then multiply the kg by the speed of light (300,000,000 m/sec) squared. You get a very big number. It's the number of joules of energy equivalent to 8 lbs of mass.
Answer:
2917.4 m/s
Explanation:
From the question given above, the following data were:
Gravitational acceleration of the Moon (g) = 0.25 times the gravitational acceleration of the earth
Radius (r) of the Moon = 1737 Km
Escape velocity (v) =?
Next, we shall determine the gravitational acceleration of the Moon. This can be obtained as follow:
Gravitational acceleration of the earth = 9.8 m/s²
Gravitational acceleration of the Moon (g) = 0.25 times the gravitational acceleration of the earth
= 0.25 × 9.8 = 2.45 m/s²
Next, we shall convert 1737 Km to metres (m). This can be obtained as follow:
1 Km = 1000 m
Therefore,
1737 Km = 1737 Km × 1000 m / 1 Km
1737 Km = 1737000 m
Thus, 1737 Km is equivalent to 1737000 m
Finally, we shall determine the escape velocity of the rocket as shown below:
Gravitational acceleration of the Moon (g) = 2.45 m/s²
Radius (r) of the moon = 1737000 m
Escape velocity (v) =?
v = √2gr
v = √(2 × 2.45 × 1737000)
v = √8511300
v = 2917.4 m/s
Thus, the escape velocity is 2917.4 m/s
Digital signals are a more reliable form of transmitting information because an error in the amplitude or frequency value would have to be very large in order to cause a jump to a different value. Signals are composed of infinite possible values. ... Sound signals can vary smoothly in volume and pitchAdvantages to using digital signals, including digital signal processing (DSP) and communication systems, include the following:
Digital signals can convey information with less noise, distortion, and interference.
Digital circuits can be reproduced easily in mass quantities at comparatively low costs.