Answer:
0.358g
Explanation:
Density of Helium = 0.179g/L
ρ=m/v
m=ρv
when the volume was 2L
m1= 0.179*2
m1=0.358g
when the volume increased to 4L
m2= 0.179*4
m2=0.716g
gram of helium added = 0.716g-0.358g
=0.358g
OPTION C The car is accelerating because the direction of velocity is changing explains why a race car going around a curve is accelerating, even if the speed is constant
- When a body is in uniform circular motion ( constant speed ), it will continuously cheanges its direction and so the body is accelerating
- The rate at which an item changes its velocity is known as acceleration, a vector variable. If an object's velocity is changing, it is accelerating.
- As a vector quantity, acceleration has a direction attached to it. The acceleration vector's direction is determined by two factors: if the thing is slowing down or speeding up the direction the thing is travelling in (+ or -)
- The following general rule is used to calculate acceleration:
An object's acceleration will be in the opposite direction of its velocity if it is slowing down.
You may use this basic concept to determine if an object's acceleration is positive or negative, to the right or left, up or down, etc.
To know more about acceleration visit : brainly.com/question/12550364
#SPJ4
Answer:
Matter is anything that has mass and occupies space. The flame itself is a mixture of gases (vaporized fuel, oxygen, carbon dioxide, carbon monoxide, water vapor, and many other things) and so is matter. <em><u>The light produced by the flame is energy, not matter.</u></em>
<em><u></u></em>
Given Information:
Angular displacement = θ = 51 cm = 0.51 m
Radius = 1.8 cm = 0.018 m
Initial angular velocity = ω₁ = 0 m/s
Angular acceleration = α = 10 rad/s
²
Required Information:
Final angular velocity = ω₂ = ?
Answer:
Final angular velocity = ω₂ = 21.6 rad/s
Explanation:
We know from the equations of kinematics,
ω₂² = ω₁² + 2αθ
Where ω₁ is the initial angular velocity that is zero since the toy was initially at rest, α is angular acceleration and θ is angular displacement.
ω₂² = (0)² + 2αθ
ω₂² = 2αθ
ω₂ = √(2αθ)
We know that the relation between angular displacement and arc length is given by
s = rθ
θ = s/r
θ = 0.51/0.018
θ = 23.33 radians
finally, final angular velocity is
ω₂ = √(2αθ)
ω₂ = √(2*10*23.33)
ω₂ = 21.6 rad/s
Therefore, the top will be rotating at 21.6 rad/s when the string is completely unwound.