Hi there!
On a level road:
∑F = Ff (Force due to friction)
The net force is the centripetal force, so:
mv²/r = Ff
Rewrite the force due to friction:
mv²/r = μmg
Cancel out the mass:
v²/r = μg
Solve for v:
v = √rμg
v = √(25)(9.81)(0.8) = 14.01 m/s
Answer:
80kg = 133 Newtons I'm pretty sure this is right.
The acceleration due to gravity is given as:
g = GM/r²
<h3>
Derivation of gravitational acceleration:</h3>
According to Newton's second law of motion,
F = ma
where,
F = force
m = mass
a = acceleration
According to Newton's law of gravity,
F<em>g </em>= GMm/(r + h)²
F<em>g = </em>gravitational force
From Newton's second law of motion,
F<em>g </em>= ma
a = F<em>g</em>/m
We can refer to "a" as "g"
a = g = GMm/(m)(r + h)²
g = GM/(r + h)²
When the object is on or close to the surface, the value of g is constant and height has no considerable impact. Hence, it can be written as,
g = GM/r²
Learn more about gravitational acceleration here:
brainly.com/question/2142879
#SPJ4
Answer:

So a=3.844 and b=5
Explanation:
Scientific notation requests to write a number using powers of ten as a factor accompanying a real number (a) between 1 and smaller than 10 that contains the digits to exactly represent the original number. So in this case, the number 384,400 can be written as:

with a=3.844, and "5" as the exponent of ten (so b=5)