One can solve the problem by using the law of conservation of momentum. The total momentum prior to the collision must be equivalent to the total momentum after the collision, so we have:
m1v1 + m2v2 = m1v1 + m2v2
Here, m1 is 0.4 Kg that is the mass of the ball, u1 is 18 m/s that is the initial velocity of the ball, m2 is 0.2 Kg that is the mass of the bottle, and u2 is 0 that is the initial velocity of the bottle.
v1 is the final velocity of the ball, which is to be determined, and v2 is 25 m/s that is the final velocity of the bottle.
Substituting and rearranging the equation, one can find the final velocity of the ball:
v1 = m1u1 - m2v2 / m1 = (0.4 kg) (18 m/s) - (0.2 Kg) (25 m/s) / 0.4 Kg = 5.5 m/s.
Answer:
An energy pyramid shows the flow of energy at each trophic level in an ecosystem. A pyramid shape is used because energy is lost at each trophic level when organisms use it up.
Explanation:
Answer:
The last one, to swim
Explanation:
The function of cilia and flagella move liquid past the surface of the cell. For single cells, such as sperm, this enables them to swim. For cells anchored in a tissue, like the epithelial cells lining our air passages, this moves liquid over the surface of the cell (e.g., driving particle-laden mucus toward the throat).
Answer:
A) The reaction is exothermic reaction
B) 46 gm CH3CH2OH = 1236KJ
15.3 gm ch3ch2OH = 1236/46 x 15.3
= 411.10 KJ..........released
therefore 1 KJ = 0.239 K cal
so, 411.10 x 0.239 kcal
= 98.2529 .................. released
c) 54 gm of H2O produced = 1236KJ
so, 42.7 gm H2O produced = 1236/54 x 42.7KJ
= 977.35 KJ released.
Explanation:
Answer:
Periodic table of elements
Explanation: