Answer:
48
Explanation:
because you add 6 and 6 and 12 to get it
Answer:
Option B = 60,600 mg (correct option)
Explanation:
First of all we will have an idea which numbers are consider as significant.
1 = All non-zero digits are consider significant figures like 1, 2, 3, 4, 5, 6, 7, 8, 9.
2= Leading zeros are not consider as a significant figures. e.g. 0.02 in this number only one significant figure present which is 2.
3= Zero between the non zero digits are consider significant like 105 consist of three significant figures.
4= The zeros at the right side e.g 3400 are also significant. There are four significant figures are present.
In given options, Option A 60.6 mg have 3 significant figures.
Option B have 5 significant figures.
Option C have 4 significant figures.
Option D have 3 significant figures.
Thus option b is correct option which have more significant figures.
Answer:
904.014 j/kgk
Explanation:
Mass of metal = 45g
Temperature of metal = 85.6°
Mass of water = 150
Temperature of water = 24.6
Final temperature of system = 28.3
Heat lost by metal = Heat gained by water
m1 * c1 * dt = m2 * c2 * dt
Q = quantity of heat
Q = m*c*dt
dt = change in temperature
dt of water = 28.3 - 24.6 = 3.7
dt of metal = 85.6 - 28.3 = 57.3
Specific heat capacity of water, c = 4200
(45 * 10^-3) * c * 57.3 = (150 * 10^-3) * 4200 * 3.7
2.5785c1 = 2331
c1 = 2331 / 2.5785
= 904.01396
= 904.014 j/kgk
Answer:
"1 M" will be the right solution.
Explanation:
The given values are:
Number of moles,
= 2 moles
Volume of solution,
= 2000 mL
or,
= 2 L
Now,
The molarity of the solution will be:
= 
On substituting the values, we get
= 
= 