D= vt +.5at^2
since he started at rest, v (initial velocity) is 0
so d=.5at^2
d = .5 (6m/s^2) (4.1s)^2
then put that into a calculator.
Answer:
Wavelength λ = 7.31 × 10^-37 m
Explanation:
From De Broglie's equation;
λ = h/mv
Where;
λ = wavelength in meters
h = plank's constant = 6.626×10^-34 m^2 kg/s
m = mass in kg
v = velocity in m/s
Given;
v = 24 mi/h
Converting to m/s
v = 24mi/h × 0.447 m/s ×1/(mi/h)
v = 10.73m/s
m = 84.5kg
Substituting the values into the equation;
λ = (6.626×10^-34 m^2 kg/s)/(84.5kg × 10.73m/s)
λ = 7.31 × 10^-37 m

- The angle between the two vectors is 90° .

- The dot product of two vectors .
- The cross product of two vectors .

⚡ Let
and
are the two vectors .
✍️ We have know that,

Where,



[1] The dot product of two vectors is “ <u>0</u> ” .
✍️ We have know that,

Where,



[2] The cross product of two vectors is “ <u>ab</u> ” .
Yes potential increases while kinetic decreases
The answer i got is 133.3 but i’m not completely sure . I got that because to get velocity i’m pretty sure it’s distance over time. So in between 8 and 10 minutes it’s 9 minutes. I pretty much just did 1200 divided by 9.