If swimmers had a choice of the water slides shown in this figure,
they would all go home dry, since there is no figure. I'll have to try to
answer this question based on only the words in the text, augmented
only by my training, education, life experience, and human logic.
-- Both slides are frictionless. So no energy is lost as a swimsuit
scrapes along the track, and the swimmer's kinetic energy at the
bottom is equal to the potential energy he had at the top.
-- Both slides start from the same height. So the same swimmer
has the same potential energy at the top of either one, and therefore
the same kinetic energy at the bottom of either one.
-- So the difference in the speeds of two different swimmers
on the slides depends only on the difference in the swimmers'
mass, and is not influenced by the shape or length of the slides
(as long as the slides remain frictionless).
If both swimmers have the same mass, then v₁ = v₂ .
Answer:
55.80s
Explanation:
Power is calculated using the expression
Power = Work done/Time
Workdone= Force ×distance
Workdone = 794×22
Work done = 17468Joules
From the power formula
Time = Workdone/Power
Time = 17468/313
Time = 55.80seconds
The elevator takes 55.80seconds to life the Taylor
Answer:
This a pure case of conflict of interests between the interest of the shareholders who are the original owners of the company and management's interest in earning much more,even if it at the expense of the shareholders.
Explanation:
Management is the entrusted with the day to day affairs of corporations.In carrying out their duty,they must have at the back of their minds that maximization of shareholder's wealth is of top priority.
However.some management teams in a bid to gain undue advantage set their remuneration below reasonable levels.
Ultimately,when this happens, their duty to watch over the investment of shareholders clashes with their interest for personal gains.
Consider that the bar magnet has a magnetic field that is acting around it, which will imply that there is a change in the magnetic flux through the loop whenever it moves towards the conducting loop. This could be described as an induction of the electromotive Force in the circuit from Faraday's law.
In turn by Lenz's law, said electromotive force opposes the change in the magnetic flux of the circuit. Therefore, there is a force that opposes the movement of the bar magnet through the conductor loop. Therefore, the bar magnet does not suffer free fall motion.
The bar magnet does not move as a freely falling object.
I think the correct answer from the choices listed above is option A. A high frequency wave is a wave with a low level of energy and a high pitch. Frequency is the number of waves passing per second of time. Hope this answers the question.