Answer:
A.) 1.3 seconds
B.) 0.42 m
Explanation:
A.) You are given the angle of projection to be 40 degrees and initial velocity of 20m/s.
At vertical component
U = Usin 40 that is,
U = 20sin40
Using the first equation of motion under gravity
V = U - gt
Let V = 0
0 = UsinØ - gt
gt = UsinØ
t = UsinØ/g
Where U = 20 m/s
Ø = 40 degree
g = 9.8 m/s^2
Substitutes all the parameters into the formula
t = 20sin40/9.8
t = 1.3 seconds
Total time of flight T = 2t
T = 2 × 1.3 = 2.6 s
B.) To calculate the maximum height,
You will use the formula
V^2 = U^2 - 2gH
At maximum height, V = 0
2gH = Usin^2Ø
H = Usin^2Ø/ 2g
Substitutes all the parameters into the formula
H = 20 sin^2(40) ÷ 2(9.8)
H = 8.2635/19.6
H = 0.42 m
The kinetic energy and gravitational potential energy changes during its movement from ground to the top height.
<h3>What happens to kinetic and potential energy while motion?</h3>
When the ball moves upward, its gravitational potential energy is increases and kinetic energy begins to decrease but when the ball falls towards the earth, its gravitational potential energy is transformed into kinetic energy. When the ball collides with the ground, the kinetic energy is transformed into other forms of energy.
Learn more about kinetic energy here: brainly.com/question/20658056
As the water russhes toward the shore, it rises because it is pushing against it.<span />
The inner planets are the planets before the asteroid belt. They are also closer to the Sun. The outer planets are the ones after the asteroid belt. <span />