Answer : Option 1) The true statement is each carbon-oxygen bond is somewhere between a single and double bond and the actual structure of format is an average of the two resonance forms.
Explanation : The actual structure of formate is found to be a resonance hybrid of the two resonating forms. The actual structure for formate do not switches back and forth between two resonance forms.
The O atom in the formate molecule with one bond and three lone pairs, in the resonance form left with reference to the attached image, gets changed into O atom with two bonds and two lone pairs.
Again, the O atom with two bonds and two lone pairs on the resonance form left, changed into O atom with one bond and three lone pairs. It concludes that each carbon-oxygen bond is neither a single bond nor a double bond; each carbon-oxygen bond is somewhere between a single and double bond.
Also, it is seen that each oxygen atom does not have neither a double bond nor a single bond 50% of the time.
Answer:5.4 g / 13.6 g *100
Explanation:Its is the correct answer
Answer:
The molar mass of
is 96.8 g/mol
Explanation:
The given molecular formula - 
Individual molar masses of each element in the compound is as follows.
Molar mass of nitrogen - 14.01 g/mol
Molar mass of of hydrogen = 1.008g/mol
Molar mass of carbon = 12.01 g/mol
Molar mass of oxygen =16.00 g/mol
Molar mass of
is
![2\times[1(14.01)+4(1.008)]+1(12.01)+3(16.00)= 96.8g/mol](https://tex.z-dn.net/?f=2%5Ctimes%5B1%2814.01%29%2B4%281.008%29%5D%2B1%2812.01%29%2B3%2816.00%29%3D%2096.8g%2Fmol)
Therefore,The molar mass of
is 96.8 g/mol