We first consider the gases that will be present in that sample.
First, there will be nitrogen, as stated. Second, there will also be water in the form of water vapor. For this, we need the vapor pressure of water at 23.0 °C, which is about 21.0 mmHg. Now, the sum of the vapor pressures of the gases will be equivalent to the total pressure. So the pressure of nitrogen gas is:
785 - 21
= 764 mmHg
Answer:
P(N) = 38.48 mmHg
Explanation:
Given data:
Partial pressure of He = 15.22 mmHg
Partial pressure of O = 35.21 mmHg
Partial pressure of N = ?
Total pressure = 88.91 mmHg
Solution:
According to Dalton law of partial pressure,
The total pressure inside container is equal to the sum of partial pressures of individual gases present in container.
Mathematical expression:
P(total) = P₁ + P₂ + P₃+ ............+Pₙ
Now we will solve this problem by using this law.
P(total) = P(He) + P(O) + P(N)
88.91 mmHg = 15.22 mmHg + 35.21 mmHg + P(N)
88.91 mmHg = 50.43 mmHg + P(N)
P(N) = 88.91 mmHg - 50.43 mmHg
P(N) = 38.48 mmHg
A) 2H₂(g) + O₂(g) → 2H₂O(l) + 285.83 kJ
Exothermic
B) 2Mg + O₂ → 2MgO + 1200kJ
Exothermic
Answer:
39.99711 grams.
Explanation:
Moles to Grams Naoh
1 mole is equal to 1 moles NaOH, or 39.99711 grams.
0.428571429 moles is your exact answer. Hope this helps!!! (: