The final temperature is -138 °C.
Explanation:
Using the equation of specific heat

We can easily find the final temperature of a 73.174 g of copper sample. As we know that specific heat is the amount of energy required to raise the temperature of the object to 1°C.
The specific heat of copper is known as 0.387 J/g°C and the initial temperature is said as 102 °C . The mass is given as 73.174 g. The heat released is 6800 J.
Since the heat is released the Q value will be negative.



Thus, the final temperature is -138 °C.
Answer:
Glycogen in an important storage polysaccharide found in animal tissues.
Explanation:
Full question:
Glycogen ________
A) forms the regulatory molecules known as enzymes
B) serves as a structural component of human cells
C) helps to protect vital organs from damage
D) is an important storage polysaccharide found in animal tissues
E) contains the genetic information found in cells
Glycogen is a complex polysaccharide of glucose founded in humans, animals, fungi and even bacteria. In humans, the glycogen is made and stored in liver cells. In the center on glycogen molecule, there is a single protein called Glycogenin. It is a center of a big flower made of glucose molecules (please refer to the scheme attached - Glycogenin is red and the blue lines are glucose chains). Glycogen is also stored in skeletal muscle, red and white blood cells, in glial brain cells and kidneys but in a smaller amounts. It can be found in the placenta in pregnant women where it serves as a nutrient storage for embryo. In an adult, the liver weighs 1,5 kg and glycogen weighs about 120g in such a liver. After a meal, the level of sugar is rising and the insulin is being secreted. Insulin is a tool by which sugar is being delivered to the cells, like a food delivery. During this period, glycogen is being synthesized in the liver out of glucose residues. When the meal is digested, the sugar level is back to normal. When more energy is needed, glycogen from the liver is broken down by glycogen phosphorylase and the new sugar is released into the bloodstream.

The empirical formula for pyrite is FeS2.
HOW TO CALCULATE EMPIRICAL FORMULA:
- The empirical formula represents the simplest whole number ratio of constituents element of a compound. The empirical formula of pyrite can be calculated as follows:
46.5 mass % Fe = 46.5g of Fe
53.5 mass % S = 53.5g of S
- Next, we divide each element's mass value by its molar mass
Fe = 46.5g ÷ 56g/mol = 0.83mol
S = 53.5g ÷ 32g/mol = 1.67mol
- Next, we divide each mole value by the smallest (0.83mol)
Fe = 0.83mol ÷ 0.83 = 1
S = 1.67mol ÷ 0.83 = 2.014
Approximately, the ratio of Fe to S is 1:2. Therefore, the empirical formula of pyrite is FeS2.
Learn more at: brainly.com/question/14044066?referrer=searchResults
Answer:
Las moléculas de los reactivos tienen que chocar entre sí. Estos choques deben de producirse con energía suficiente de forma que se puedan romper y formar enlaces químicos. En el choque debe haber una orientación adecuada para que los enlaces que se tienen que romper y formar estén a una distancia y posición viable.