Answer:
9.45<em>g</em><em>=</em><em> </em>28.2
Divide through by 9.45
<em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em>g</em><em>=</em><em>2</em><em>8</em><em>.</em><em>2</em><em>/</em><em>9</em><em>.</em><em>4</em><em>5</em>
<em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em>g=</em><em>2</em><em>.</em><em>9</em><em>8</em><em> </em><em>to </em><em>2</em><em>s</em><em>.</em><em>f</em>
<span>10=z/2+7
Subtracat 7 from both sides
3=z/2
Multiply 2 on both sides
Final Answer: 6 = z</span>
Answer:
13x=13
Step-by-step explanation:
...............
Answer:
Approximately 22.97 years
Step-by-step explanation:
Use the equation for continuously compounded interest, which uses the exponential base "e":

Where P is the principal (initial amount of the deposit - unknown in our case)
A is the accrued value (value accumulated after interest is compounded), in our case it is not a given value but we know that it triples the original deposit (principal) so we write it as: 3 P (three times the principal)
k is the interest rate : 5% which translates into 0.05
and t is the time in the savings account to triple its value (what we need to find)
The formula becomes:

To solve for "t" we divide both sides of the equation by P (notice it cancels P everywhere), and then to solve for the exponent "t" we use the natural logarithm function:


