Answer:
<h3>14.97m/s</h3>
Explanation:
Given
Initial velocity of the car u = 8m/s
Distance travelled by the rider S = 40m
Acceleration a = 2m/s²
Required
rider's velocity after the acceleration v
Using the equation of motion
v² = u²+2as
v² = 8²+2(2)(40)
v² = 64+160
v² = 224
v = √224
v = 14.97m/s
Hence the rider's velocity after the acceleration is 14.97m/s
Answer:
Hello your question is incomplete attached below is the complete question
Answer : x ( acceleration of mass 4m ) = 
The top pulley rotates because it has to keep the center of mass of the system at equilibrium
Explanation:
Given data:
mass suspended = 4 meters
mass suspended at other end = 3 meters
first we have to express the kinetic and potential energy equations
The general kinetic energy of the system can be written as
T = 
T =
also the general potential energy can be expressed as
U = 
The Lagrangian of the problem can now be setup as

next we will take the Euler-Lagrange equation for the generalized equations :
Euler-Lagrange equation = 
solving the equations simultaneously
x ( acceleration of mass 4m ) = 
The top pulley rotates because it has to keep the center of mass of the system at equilibrium
Answer:
a mirror is a glass which reflects the light falls on it ok
Explanation:
just put a light and see ok
please mark me as brainlist
Answer:
i - component of V is zero for any value of t i-e no motion in this direction
Explanation:
Since
r= i+3
j+t k
==> V =
=
=
and acceleration is given by taking derivative of velocity w.r.t t
==> a=
=
=
so, V=0i+6tj+k
and
a = 0i+6j+k
i - component of V is zero for any value of t i-e no motion in this direction
When the balloon is kept in the sun, due to Sun's heat, the kinetic energy of gaseous particles inside the balloons also gets increased and the balloon expands. This will increase the pressure on the walls of the balloon. It continues to expand and comes to a stage when the baloon bursts.