The percent difference between two numbers
and
is given by

The absolute value is there because we only care about the absolute percent difference, and not taking into account whether we go from
to
or vice versa. If we remove them, we have two possible interpretations of percent difference.
For example, the (absolute) percent difference between 3 and 6 is

In other words, we add 100% of 3 to 3 to end up with 6. This is the same as the percent difference going from 3 to 6. On the other hand, the percent difference going from 6 to 3 is

which is to say, we take away 50% of 6 away from 6 to end up with 3.
"Make comparisons to object measurements" tells us that the differences should be computed relative to "measurements for object". In other words, take
from the left column and
from the right column.



Answer:
t = 0.319 s
Explanation:
With the sudden movement of the athlete a pulse is formed that takes time to move along the rope, the speed of the rope is given by
v = √T/λ
Linear density is
λ = m / L
λ = 4/20
λ = 0.2 kg / m
The tension in the rope is equal to the athlete's weight, suppose it has a mass of m = 80 kg
T = W = mg
T = 80 9.8
T = 784 N
The pulse rate is
v = √(784 / 0.2)
v = 62.6 m / s
The time it takes to reach the hook can be searched with kinematics
v = x / t
t = x / v
t = 20 / 62.6
t = 0.319 s
Answer:
Groceries stay in the bag.
Explanation:
Given:
Maximum force = 250 N
Bag filled with = 20 kg
Lifted acceleration = 
Solution:
We need to calculate the exerted force on the grocery bag by using Newton's second law.

Where:
F = Exerted force on the object.
m = Mass of the object in kg
a = Acceleration of the object in 
Now, we substitute m = 20 kg and a =
in Newton's second law,


Since, the exerted force on the bag is less than 250 N, the groceries will stay in the bag.
Answer:
D: Increase the distance between the objects.
E: Decrease the mass of one of the objects.
Answer:
conservative
Explanation:
Nonconservative force is the force that depends on a path, however conservative does not depend on a path and it is not associated with the potential energy. When the work is done by an unconservative force, mechanical energy is added or removed. Friction is the best example for a non-conservative force. When these non-conservative forces are acting, the mechanical energy changes but these are not preserved.
hope this helped!