Answer:
The mechanical energy of the ball-Earth-floor system the instant the ball left the floor is 7 Joules.
Explanation:
It is given that,
Initial gravitational potential energy of the ball-Earth-floor system is 10 J.
The ball then bounces back up to a height where the gravitational potential energy is 7 J.
Let U is the mechanical energy of the ball-Earth-floor system the instant the ball left the floor. Due to the conservation of energy, the mechanical energy is equal to difference between initial gravitational potential energy and the after bouncing back up to a height.
Initial mechanical energy is 10 + 0 = 10 J
Mechanical energy just before the collision is 0 + 10 = 10 J
Final mechanical energy, 7 + 0 = 7 J
Hence, the mechanical energy of the ball-Earth-floor system the instant the ball left the floor is 7 Joules.
D
The exact location of electrons in electron shells of atoms cannot be exactly ascertained. This is why VSPER atomic models represent the position of electrons (s, p, d, & f) using the probability of where they would most be expected to be found.
Explanation:
This is because merely observing electrons changes their behavior. Remember that to observe something one has to shine light on it so it bounces back to the eye. Due to the negligible mass of electrons, mere photons of light will change their direction of movement, spin or other behaviors/properties.
Learn More:
For more on electron clouds check out;
brainly.com/question/12199882
brainly.com/question/11686000
#LearnWithBrainly
Answer:
The answer is B, although technically that is an eclipse.