Answer:
Faraday's constant will be smaller than it is supposed to be.
Explanation:
If the copper anode was not completely dry when its mass was measured, mass of the copper must be heavier than it should have been. Hence, the calculated Faraday’s constant would be smaller than it is supposed to be since when calculating Faraday’s Constant, the charge transferred is divided by the moles of electrons.
Answer:
![K_{c} = [\text{C}]^{2}[\text{[D]}](https://tex.z-dn.net/?f=K_%7Bc%7D%20%3D%20%5B%5Ctext%7BC%7D%5D%5E%7B2%7D%5B%5Ctext%7B%5BD%5D%7D)
Explanation:

The general formula for an equilibrium constant expression is
![K_{c} = \dfrac{[\text{Products}]}{[\text{Reactants}]}](https://tex.z-dn.net/?f=K_%7Bc%7D%20%3D%20%5Cdfrac%7B%5B%5Ctext%7BProducts%7D%5D%7D%7B%5B%5Ctext%7BReactants%7D%5D%7D)
Solids and liquids are not included in the equilibrium constant expression.
Thus, for this reaction,
![K_{c} = [\textbf{C}]^{\mathbf{2}}\textbf{[D]}](https://tex.z-dn.net/?f=K_%7Bc%7D%20%3D%20%5B%5Ctextbf%7BC%7D%5D%5E%7B%5Cmathbf%7B2%7D%7D%5Ctextbf%7B%5BD%5D%7D)
The final gas pressure : 175.53 atm
<h3>Further explanation</h3>
Maybe the complete question is like this :
A ridged steel tank filled with 62.7 l of nitrogen gas at 85.0 atm and 19 °C is heated to 330 °C while the volume remains constant. what is the final gas pressure?
The volume remains constant⇒Gay Lussac's Law
<em>When the volume is not changed, the gas pressure in the tube is proportional to its absolute temperature </em>

P₁=85 atm
T₁=19+273=292 K
T₂=330+273=603 K

Answer:
The answer to the question is;
The concentration of the Solution #1 in terms of molarity is
0.16704X moles/litre.
Explanation:
Let the concentration of the stock solution be X moles/liter
Therefore, 83.52 ml of the stock solution contains
83.52×(X/1000) moles
Dilution of 83.52 ml of X to 500 ml gives solution 1 with a concentration of
500 ml of solution 1 contains 83.52×(X/1000) moles
Therefore 1000 ml or 1 litre contains 2×83.52×(X/1000) moles = 0.16704X moles/litre
The molarity of solution 1 is 0.16704X moles/litre.
<span>((P1V1/T1)=(P2V2/T2))</span>