Answer:
19.8 kg of C₂H₂ is needed
Explanation:
We solve this by a rule of three:
If 1251 kJ of heat are relased in the combustion of 1 mol of acetylene
95.5×10⁴ kJ of heat may be released by the combustion of
(95.5×10⁴ kJ . 1) /1251kJ = 763.4 moles of C₂H₂
Let's convert the moles to mass → 763.4 mol . 26 g/1 mol = 19848 g
If we convert the mass from g to kg → 19848 g . 1kg / 1000g = 19.8 kg
Answer is: 5,75·10⁻¹.
Kf = 2,3·10⁶ 1/s.
K = 4,0·10⁸ 1/s.
Kr = ?
Kf - <span>forward rate constant.
K - </span><span>equilibrium constant.
Kr - </span><span>reverse rate constant.
</span>Since both Kf and Kr are constants at a given temperature, their ratio is also a constant that
is equal to the equilibrium constant K.<span>
K = Kf/Kr.
Kr = Kf/K = </span>2,3·10⁶ 1/s ÷ 4,0·10⁸ 1/s = 5,75·10⁻¹.
Answer:
120 V usually but its not given in the option so 110 V