The different is that the galvanic cell converts chemical energy into the electrical energy and the electrolytic cell coverts electrical energy into chemical energy
Answer:1
Explanation: friction is showing us how in the past
a. Organic: C₁₀H₁₆KNO₉S₂; (CH₃)₄As₂; C₆H₁₂O₆
b. Inorganic: NaAsO₂; HSiCl₃; (BiO)₂CO₃; H₂P₂O₇; H₂O; CO₂
Compounds containing <em>both C and H</em> are organic.
Compounds that are <em>not organic</em> are inorganic.
Answer:
The answer to your question is P2 = 2676.6 kPa
Explanation:
Data
Volume 1 = V1 = 12.8 L Volume 2 = V2 = 855 ml
Temperature 1 = T1 = -108°C Temperature 2 = 22°C
Pressure 1 = P1 = 100 kPa Pressure 2 = P2 = ?
Process
- To solve this problem use the Combined gas law.
P1V1/T1 = P2V2/T2
-Solve for P2
P2 = P1V1T2 / T1V2
- Convert temperature to °K
T1 = -108 + 273 = 165°K
T2 = 22 + 273 = 295°K
- Convert volume 2 to liters
1000 ml -------------------- 1 l
855 ml -------------------- x
x = (855 x 1) / 1000
x = 0.855 l
-Substitution
P2 = (12.8 x 100 x 295) / (165 x 0.855)
-Simplification
P2 = 377600 / 141.075
-Result
P2 = 2676.6 kPa
Answer:
The correct approach is Option B (Peer Review).
Explanation:
- Rather made reference to someone as a scientific peer-review, it encourages the specialist who has not been essential to the study team to analyze the study objectively and pointed out everyone's mistakes. It serves as major self-regulation for scholars and aims to make the publishing process somewhat credible. Hence, the solution to this issue is Peer Examination.
- Funding organizations rarely have the capabilities to recognize out mistakes, whereas definitive analysis is a method of study that helps to make a definitive statement. The gathering of data is simply a process of scientific study.
Other approaches do not apply to the example mentioned. Although the one mentioned is right.