B. 133.88
Sorry po kung mali
Answer is: pH value of solution of NaC₂H₃O₂ is 9.07.
Chemical reaction: C₂H₃O₂⁻ + H₂O ⇄ HC₂H₃O₂ + OH⁻.
Ka(HC₂H₃O₂) = 1,8·10⁻⁵.<span>
Ka · Kb = Kw.
</span>1,8·10⁻⁵ mol/dm³ · Kb = 1·10⁻¹⁴ mol²/dm⁶; the ionic product of water at 25°C.<span>
Kb(</span>C₂H₃O₂⁻)
= 1·10⁻¹⁴ mol²/dm⁶ ÷ 1,8·10⁻⁵ mol/dm³.<span>
Kb(</span>C₂H₃O₂⁻) =
5,56·10⁻¹⁰ mol/dm³.
c(C₂H₃O₂⁻) = 0,25 M.
[OH⁻] = [HC₂H₃O₂] = x.
[C₂H₃O₂⁻] = 0,25 M - x.
Kb = [OH⁻] · [HC₂H₃O₂] / [C₂H₃O₂⁻].
5,56·10⁻¹⁰ = x² / (0,25 M -x).
Solve quadratic equation: x = [OH⁻] = 0,0000118 M.
pOH = -log[OH⁻] = -log(0,0000118M) = 4,93.
pH + pOH = 14.
pH = 14 - 4,93 = 9,07.
Correct answer is <span>X = ΔH
Reason:
1) The graph of enthalpy Vs reaction coordinate suggest the reaction is endothermic in nature. For endothermic reaction, energy if product is more than that of reactant. Hence, option 1 i.e. </span><span>X = -ΔH cannot be correct.
2) Since the reaction is endothermic in nature, </span>energy if product is more than that of reactant. Hence, option 2 i.e. X = ΔH is correct.
3) Activation energy is energy difference between Reactant (A) and transition state (B). However, as per option C, activation energy (A.E.) is energy difference between product (C) and transition state (B), which is incorrect.