Answer:
The correct statement is option c, that is, particles discharged in the air by volcanoes fall to the ground and enrich the soil.
Explanation:
The eruptions of volcanoes lead to the dispersion of ash over the broader regions surrounding the site of eruption. On the basis of the chemistry of the magma, the ash will be comprising different concentrations of soil nutrients. While the major elements found in the magma are oxygen and silica, the eruptions also lead to the discharging of carbon dioxide, water, hydrogen sulfide, sulfur dioxide, and hydrogen chloride.
In supplementation, the eruptions also discharge bits of rocks like pyroxene, potolivine, amphibole, feldspar that are in turn enriched with magnesium, iron, and potassium. As an outcome, the areas which comprise huge deposits of the volcanic soil are quite fertile.
Answer:
Well there is a lot of differences between the two. Its called homogeneous and Heterogeneous mixtures. Homogeneous mixtures are all the substances are evenly distributed throughout the mixture (salt water, air, blood). Heterogeneous mixtures are the substances that are not evenly distributed (chocolate chip cookies, pizza, rocks). So Pasta with sauce and meatballs is heterogeneous and air is homogeneous
HOPE THIS HELPS HAVE A GREAT DAY!!~
Explanation:
The molar mass of methylammonium bromide is 111u.
<h3>What is molar mass?</h3>
The molar mass is defined as the mass per unit amount of substance of a given chemical entity.
Multiply the atomic weight (from the periodic table) of each element by the number of atoms of that element present in the compound.
Add it all together and put units of grams/mole after the number.
Atomic weight of H is 1u
Atomic weight of N is 14u
Atomic weight of C is 12u
Atomic weight of Br is 79u
Calculating molar mass of
=2(1 x3+ 14+12+ 1 x 3 +79) = 111u
Hence, the molar mass of methylammonium bromide is 111u.
Learn more about molar mass here:
brainly.com/question/12127540
#SPJ1
Answer:
34 gram of FeO produced 8 gram of oxygen.
Explanation:
Given data:
Mass of FeO = 34 g
Mass of oxygen = ?
Solution;
Chemical equation:
2FeO → 2Fe + O₂
Number of moles of FeO:
Number of moles = mass/ molar mass
Number of moles = 34 g /71.8 g/mol
Number of moles = 0.5 mol
Now we will compare the moles of FeO with oxygen:
FeO : O₂
2 : 1
0.5 : 1/2 × 0.5 = 0.25
Mass of oxygen:
Mass = number of moles × molar mass
Mass = 0.25 mol × 32 g/mol
Mass = 8 g
So 34 gram of FeO produced 8 gram of oxygen.