Answer : The molar mass of the solute will be
87.90 g/mol.Explanation : We know the formula for elevation in boiling point, which is
Δt = i

m
given that, Δt = 0.357,

= 5.02 and mass of

= 40,
on substituting the value we get,
0.357 = (1) X (5.02) X (x/ 0.044), on solving we get x = 2.844 X

.
Now, 0.250/ 2.844 X

=
87.90 g/mol. which is the weight of unknown component.
Answer:

Explanation:
Hello,
In this case, is possible to infer that the thermal equilibrium is governed by the following relationship:

Thus, both iron's and water's heat capacities are: 0.444 and 4.18 J/g°C respectively, so one solves for the mass of water as shown below:

Best regards.
Answer:
I am sure it is D or C. have a nice day