Answer : The volume of hydrogen gas at STP is 4550 L.
Explanation :
Combined gas law is the combination of Boyle's law, Charles's law and Gay-Lussac's law.
The combined gas equation is,

where,
= initial pressure of gas = 100.0 atm
= final pressure of gas at STP = 1 atm
= initial volume of gas = 50.0 L
= final volume of gas at STP = ?
= initial temperature of gas = 
= final temperature of gas at STP = 
Now put all the given values in the above equation, we get:


Therefore, the volume of hydrogen gas at STP is 4550 L.
Answer:
Q = mcT ...you can either substitute the molar heat capacity of water in the place of c or the specific heat capacity of water.
Explanation:
Answer:
0.79 g
Explanation:
Let's introduce a strategy needed to solve any similar problem like this:
- Apply the mass conservation law (assuming that this reaction goes 100 % to completion): the total mass of the reactants should be equal to the total mass of the products.
Based on the mass conservation law, we need to identify the reactants first. Our only reactant is sodium bicarbonate, so the total mass of the reactants is:

We have two products formed, sodium carbonate and carbonic acid. This implies that the total mass of the products is:

Apply the law of mass conservation:

Substitute the given variables:

Rearrange for the mass of carbonic acid:
