Answer:
Its in the Explanation
Explanation:
Here's what I got.
Aluminium-27 is an isotope of aluminium characterized by the fact that is has a mass number equal to
27
.
Now, an atom's mass number tells you the total number of protons and of neutrons that atom has in its nucleus. Since you're dealing with an isotope of aluminum, it follows that this atom must have the exact same number of protons in its nucleus.
The number of protons an atom has in its nucleus is given by the atomic number. A quick looks in the periodic table will show that aluminum has an atomic number equal to
13
.
This means that any atom that is an isotope of aluminum will have
13
protons in its nucleus.
Since you're dealing with a neutral atom, the number of electrons that surround the nucleus must be equal to the number of protons found in the nucleus.
Therefore, the aluminium-27 isotope will have
13
electrons surrounding its nucleus.
Finally, use the known mass number to determine how many neutrons you have
mass number
=
no. of protons
+
no. of neutrons
no. of neutrons
=
27
−
13
=
14
Your welcome :)
3.81 kpa is the condition which is not true at STP
According to IUPAC the standard temperature and pressure that is STP the temperature is 273.15 k or 0 degrees celsius . and the absolute temperature of 101.325 Kpa or 1 atm. In addition at STP the volume of ideal gas is 22.4
Answer:
D. 0.75 grams
Explanation:
The data given on the iridium 182 are;
The half life of the iridium 182,
= 15 years
The mass of the sample of iridium, N₀ = 3 grams
The amount left, N(t) after two half lives is given as follows;

For two half lives, t = 2 × 
∴ t = 2 × 15 = 30


∴ The amount left, N(t) = 0.75 grams
Crust, the upper layer of the Earth, is not always the same. Crust under the oceans is only about 5 km thick while continental crust can be up to 65 km thick. Also, ocean crust is made of denser minerals than continental crust.
The tectonic plates are made up of Earth’s crust and the upper part of the mantle layer underneath. Together the crust and upper mantle are called the lithosphere and they extend about 80 km deep. The lithosphere is broken into giant plates that fit around the globe like puzzle pieces. These puzzle pieces move a little bit each year as they slide on top of a somewhat fluid part of the mantle called the asthenosphere. All this moving rock can cause earthquakes.
The asthenosphere is ductile and can be pushed and deformed like silly putty in response to the warmth of the Earth. These rocks actually flow, moving in response to the stresses placed upon them by the churning motions of the deep interior of the Earth. The flowing asthenosphere carries the lithosphere of the Earth, including the continents, on its back.
I would say the answer is emissions. These are the particles that are not supposed to be present in air but due to the production of different substances from humans daily activities these substances go with the air we breath. Hope this helped.