<u>Answer:</u> The volume of stock solution needed is 90 mL
<u>Explanation:</u>
To calculate the molarity of the diluted solution, we use the equation:

where,
are the molarity and volume of the stock sulfuric acid solution
are the molarity and volume of diluted sulfuric acid solution
We are given:

Putting values in above equation, we get:

Hence, the volume of stock solution needed is 90 mL
Answer:
Option D is correct = 8.12 grams of NaCl
Explanation:
Given data:
Moles of sodium chloride = 0.14 mol
Mass of sodium chloride = ?
Solution:
Formula:
Number of moles = mass of NaCl / Molar mass of NaCl
Molar mass of NaCl = 58 g/mol
Now we will put the values in formula.
0.14 mol = Mass of NaCl / 58 g/mol
Mass of NaCl = 0.14 mol × 58 g/mol
Mass of NaCl = 8.12 g of NaCl
Thus, 0.14 moles of NaCl contain 8.12 g of NaCl.
Answer:
molality of sodium ions is 1.473 m
Explanation:
Molarity is moles of solute per litre of solution
Molality is moles of solute per kg of solvent.
The volume of solution = 1 L
The mass of solution = volume X density = 1000mL X 1.43 = 1430 grams
The mass of solute = moles X molar mass of sodium phosphate = 0.65X164
mass of solute = 106.6 grams
the mass of solvent = 1430 - 106.6 = 1323.4 grams = 1.3234 Kg
the molality = 
Thus molality of sodium phosphate is 0.491 m
Each sodium phosphate of molecule will give three sodium ions.
Thus molality of sodium ions = 3 X 0.491 = 1.473 m
Answer:
c. liquid
Explanation:
because the are not very close if the said very closely packed together it would have been a solid
Once you identify the compound as Ionic<span>, </span>Molecular, or an Acid, follow the individual ... chemicalformulas<span>, write </span>whether<span> the compound is </span>ionic or molecular<span>, and ...</span>