Answer:
Heavy Snowfall
High Winds
Extremely Low Temperatures
Reasoning:
Lots of snow, kinda self explanatory
high winds are needed to carry the snow that fast
its has to be below freezing for snow to even form
Answer:
C. Mutations are a change in DNA or a chromosome and can be helpful, harmful or may have no affect.
Explanation:
- Mutations are spontaneous random changes that occurs in the genetic make up of an organisms. Mutations are rare and their rate of occurrence is random.
- Mutations may occur on the gene level known as gene mutations or at chromosome levels called chromosomal mutations.
- Mutations may be beneficial, harmful or have no effect on a given organisms. Harmful mutations cause disorders that may lead to abnormality or death of an organisms. Beneficial mutations improve an organisms adaptability to the environment.
Explanation:
Mass of fructose = 33.56 g
Mass of water = 18.88 g
Total mass of the solution = Mass of fructose + Mass of water = M
M = 33.56 g + 18.88 g =52.44 g
Volume of the solution = V = 40.00 mL
Density =
a) Density of the solution:

b) Molar mass of fructose = 180.16 g/mol
Moles of fructose = 
Molar mass of water = 18.02 g/mol
Moles of water= 
Mole fraction of fructose in this solution:


Mole fraction of water = 
c) Average molar mass of of the solution:
=

d) Mass of 1 mole of solution = 42.50 g/mol
Density of the solution = 1.311 g/mL
d) Specific molar volume of the solution:


Answer:
they are inversly related
Explanation:
As the force increases distance decreases .They are related with an equation
F= Gm1×m2/r^2
<u>Answer:</u> The
for the reaction is -1835 kJ.
<u>Explanation:</u>
Hess’s law of constant heat summation states that the amount of heat absorbed or evolved in a given chemical equation remains the same whether the process occurs in one step or several steps.
According to this law, the chemical equation is treated as ordinary algebraic expressions and can be added or subtracted to yield the required equation. This means that the enthalpy change of the overall reaction is equal to the sum of the enthalpy changes of the intermediate reactions.
The given chemical reaction follows:

The intermediate balanced chemical reaction are:
(1)
( × 4)
(2)

The expression for enthalpy of the reaction follows:
![\Delta H^o_{rxn}=[4\times (-\Delta H_1)]+[1\times \Delta H_2]](https://tex.z-dn.net/?f=%5CDelta%20H%5Eo_%7Brxn%7D%3D%5B4%5Ctimes%20%28-%5CDelta%20H_1%29%5D%2B%5B1%5Ctimes%20%5CDelta%20H_2%5D)
Putting values in above equation, we get:

Hence, the
for the reaction is -1835 kJ.