Electronegativity measures how much an atom likes to pull electrons away from another one. Ionization energy measures how much an atom doesn't want to lose electrons. As an atom that wants to gain electrons will clearly not want to lose electrons, these trends are basically identical.
Answer:
9.29 mol
Explanation:
Given data:
Number of moles = ?
Mass = 148.6 g
Solution:
Number of moles = mass/ molar mass
Molar mass of CH₄ = 16 g/mol
Now we will put the values in formula.
Number of moles = 148.6 g/ 16 g/mol
Number of moles = 9.29 mol
Thus 148.6 g have 9.29 moles.
I believe Winter is <span>your answer.</span>
The choices that should have accompanied this question were:
A. 1
<span>B. 2 </span>
<span>C. 3 </span>
<span>D. 4
</span>
My answer is B. 2.
Below is an explanation, I found while doing the research.
<span>Phosphate needs 3 electrons each totaling 6 electrons so each zinc will need to give up 2 electrons.
Phosphate wants to imitate the electron configuration of Argon because noble configurations are the most stable. With P getting the extra electrons the valence shell will be 3s2 3p6, which is the same as Argon. Without the extra electrons, the P valence shell looks like this 3s2 3p3, now you can see why each phosphorus wants 3 more electrons, that will make it 3s2 3p6, just like Argon.</span>
MgCl₂ ---> Mg(2+) + 2Cl(-)
0,01-x.............x.............2x
MgCl₂ ---> Mg(2+) + 2Cl(-)
0,01-x.............x.............2x
0...................0,01.......0,02
The molality of chloride ions is 0,02M.