Answer:
<em>C. The electron-withdrawing fluorine atoms pull electron density from the oxygen in trifluoroacetate. The negative charge is more stabilized in trifluoroacetate by this effect.</em>
<em></em>
Explanation:
<em>The structures of trifluoroacetate and acetic acid are both shown in the image attached.</em>
<em>The trifluoroacetate anion (CF3CO2-), just like the acetate anion has in the middle, two oxygen atoms.</em>
<em>However, in the trifluoroacetate anion, there are also three electronegative fluorine atoms attached to the nearby carbon atom attached to the carbonyl, and these pull some electron density through the sigma bonding network away from the oxygen atoms, thereby spreading out the negative charge further. This effect, called the "inductive effect" stabilizes the anion formed,the trifouoroacetate anion is thus more stabilized than the acetate anion.</em>
<em>Hence, trifluoroacetic acid is a stronger acid than acetic acid, having a pKa of -0.18.</em>
<em></em>
<u><em>Hope this helps!</em></u>
<u><em>Please mark brainliest!</em></u>
Answer:
All of them!
Explanation:
Since Mg, Li, Ca, and Cs are all in groups 1 and 2 of the periodic table, they are alkali/alkaline earth metals and will all lose electrons during ionic bonding.
Answer:

Explanation:
Hello there!
In this case, it is possible to propose an energy balance in order to illustrate how the heat released by the reaction is absorbed by the water:

Thus, since the heat released by the reaction is -112 kJ (-112000 J), it is possible to define the hear absorbed by the water in terms of mass, specific heat and temperature change:

In such a way, it is possible to define the final temperature as shown below:

Best regards!