Ans 1. Both
Ans 2. Once inside plants, carbon moves through food chains, where organisms become nutrients including herbivores, carnivores and ultimately, decomposers. Once buried in the soil, carbon can be converted into fossil fuels over long periods of time and then also reenter the atmosphere by combustion. The Law of Conservation of Matter states that matter cannot be created or destroyed. The carbon cycle is an example of the Law
Ans 3. Most of the chemical energy needed for life is stored in organic compounds as bonds between carbon atoms and other atoms. The law of conservation of energy states that energy can not be created or destroyed. Thus, just like matter energy is also conserved in the process.
Hope it helps
<span>n this order, Ď=1.8gmL, cm=0.5, and mole fraction = 0.9
First, let's start with wt%, which is the symbol for weight percent. 98wt% means that for every 100g of solution, 98g represent sulphuric acid, H2SO4.
We know that 1dm3=1L, so H2SO4's molarity is
C=nV=18.0moles1.0L=18M
In order to determine sulphuric acid solution's density, we need to find its mass; H2SO4's molar mass is 98.0gmol, so
18.0moles1Lâ‹…98.0g1mole=1764g1L
Since we've determined that we have 1764g of H2SO4 in 1L, we'll use the wt% to determine the mass of the solution
98.0wt%=98g.H2SO4100.0g.solution=1764gmasssolution→
masssolution=1764gâ‹…100.0g98g=1800g
Therefore, 1L of 98wt% H2SO4 solution will have a density of
Ď=mV=1800g1.0â‹…103mL=1.8gmL
H2SO4's molality, which is defined as the number of moles of solute divided by the mass in kg of the solvent; assuming the solvent is water, this will turn out to be
cm=nH2SO4masssolvent=18moles(1800â’1764)â‹…10â’3kg=0.5m
Since mole fraction is defined as the number of moles of one substance divided by the total number of moles in the solution, and knowing the water's molar mass is 18gmol, we could determine that
100g.solutionâ‹…98g100gâ‹…1mole98g=1 mole H2SO4
100g.solutionâ‹…(100â’98)g100gâ‹…1mole18g=0.11 moles H2O
So, H2SO4's mole fraction is
molefractionH2SO4=11+0.11=0.9</span>
Answer:
V₂ = 317 L
Explanation:
Given data:
Initial number of moles of hydrogen = 18.9 mol
Initial volume of gas = 428 L
Final volume = ?
Final number of moles = 14.0 mol
Solution:
According to the Avogadro law,
Number of moles of gas is directly proportional to the volume of gas at constant temperature and pressure.
Mathematical expression:
V₁/n₁ = V₂/n₂
V₁ = Initial Volume of balloon
n₁ = initial number of moles
V₂ = Final volume of balloon
n₂ = Final number of moles
Now we will put the values.
428 L / 18.9 mol = V₂/ 14 mol
V₂ =428 L × 14 mol / 18.9 mol
V₂ = 5992 L /18.9
V₂ = 317 L
Answer: Yellow is electron, green is neutron, Red is proton
Explanation:
I learned this
Answer:
Explanation:
number of moles = mass / molar mass
= 525 / 7+14+(3*14)
= 525 / 63
= 8.33 mol