1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
NikAS [45]
3 years ago
11

How do you get a percent out of a decimal?

Mathematics
2 answers:
Gekata [30.6K]3 years ago
8 0
To convert a decimal<span> to a </span>percent<span>, multiply the </span>decimal<span> by 100, then add on the % symbol. An easy way to multiply a </span>decimal<span> by 100 is to move the </span>decimal<span> point two places to the right. This is done in the example below. Each </span>decimal<span> in Example 1 went</span>out<span> two places to the right of the </span>decimal<span> point.</span>
sp2606 [1]3 years ago
4 0
A decimal is out of 1, a percent is out of 100, so just try multiplying the decimal by 100!
there are more variables that may affect the answer but with the information you provided, that is how its done.
You might be interested in
jesse purchased a full tank of gas on Thursday . on Friday, he yook a road trip and used 1/2 of the tank. on Saturday, he did so
DIA [1.3K]
X - ( 1 / 2 )x - ( 1 / 3)x = 6x / 6 - 3x / 6 - 2x / 6 = ( 1 / 6 )x, where x is full tank of gas  
The answer is 1 / 6 of the gas have left ;

4 0
3 years ago
If anyone knows about definite integrals for calculus then please I request help! I
kicyunya [14]

Answer:

\displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{1}{8} \bigg( e^\Big{\frac{4}{25}} - e^\Big{\frac{4}{81}} \bigg)

General Formulas and Concepts:

<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:                                                           \displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Integration

  • Integrals

Integration Rule [Fundamental Theorem of Calculus 1]:                                     \displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

Integration Property [Multiplied Constant]:                                                         \displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

U-Substitution

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx

<u>Step 2: Integrate Pt. 1</u>

<em>Identify variables for u-substitution.</em>

  1. Set <em>u</em>:                                                                                                             \displaystyle u = 4x^{-2}
  2. [<em>u</em>] Differentiate [Basic Power Rule, Derivative Properties]:                       \displaystyle du = \frac{-8}{x^3} \ dx
  3. [Bounds] Switch:                                                                                           \displaystyle \left \{ {{x = 9 ,\ u = 4(9)^{-2} = \frac{4}{81}} \atop {x = 5 ,\ u = 4(5)^{-2} = \frac{4}{25}}} \right.

<u>Step 3: Integrate Pt. 2</u>

  1. [Integral] Rewrite [Integration Property - Multiplied Constant]:                 \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{-1}{8}\int\limits^9_5 {\frac{-8}{x^3}e^\big{4x^{-2}}} \, dx
  2. [Integral] U-Substitution:                                                                              \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{-1}{8}\int\limits^{\frac{4}{81}}_{\frac{4}{25}} {e^\big{u}} \, du
  3. [Integral] Exponential Integration:                                                               \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{-1}{8}(e^\big{u}) \bigg| \limits^{\frac{4}{81}}_{\frac{4}{25}}
  4. Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:           \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{-1}{8} \bigg( e^\Big{\frac{4}{81}} - e^\Big{\frac{4}{25}} \bigg)
  5. Simplify:                                                                                                         \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{1}{8} \bigg( e^\Big{\frac{4}{25}} - e^\Big{\frac{4}{81}} \bigg)

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

4 0
3 years ago
HELP WITH THIS MATH ANSWER QUESTIONS 1-4 URGENT HELP!!!!!!!!!
Margarita [4]
1.) 9 cm
2.) 5 cm
3.) 10 in
4.) 4 in
3 0
3 years ago
Tyleris making invitations to the fair. He has already made some of the invitations, and he wants to finish the rest of them wit
Firlakuza [10]

The Civil Rights Act of 1866, passed over the veto of President Andrew Johnson, gave ex-slaves full citizenship (except for voting) in the United States. ... The era of Reconstruction was an attempt to establish new governments in the former Confederacy and to bring freedmen into society as voting citizens.

3 0
3 years ago
Read 2 more answers
Can someone help me with this please? Thank you!
Finger [1]

Answer:

528 cm²

Step-by-step explanation:

First I would calculate the area of the side rectangles:

20 x 9 = 180 cm²

There are two identical rectangles on both sides so i would x2

180 x 2 = 360 cm²

The area of the middle rectangle:

6 x 20 = 120 cm²

The area of the triangles:

Area of a triangle = (Base x Height)/2

8 x 6 = 48

48 ÷ 2 = 24

There are two identical triangles on the bottom and the top so x2

24 x 2 = 48

Now add all the values up:

360 + 120 + 48 = 528 cm²

I hope this helps!

5 0
2 years ago
Other questions:
  • Please help ASAP. The question is down below. Thanks
    8·1 answer
  • Use the distributive property to write an expression equivalent to 5 x 3/4)
    10·1 answer
  • Can someone please let answer day 17???
    8·1 answer
  • A plane flies from Houston to New York City in 4 hours. The distance it travelled was 1627 miles. What was the average speed of
    15·1 answer
  • Find the value of x in |2x_5|+7=20​
    14·1 answer
  • Which of the following lengths will form a triangle?
    6·1 answer
  • A bird (B) is spotted flying 900 feet from an observer. The observer (O) also spots the top of a tower (T) at a height of 200 fe
    6·1 answer
  • O6. Solve the equation x2=10 a. X= +10 b. X= V10 X= +5 d. X= 5​
    12·1 answer
  • Pease help me i'll give you the brainliest<br>​
    7·1 answer
  • Tasha wants to graph a line that is parallel to the line with equation y = 3x. Give two examples of linear equations that repres
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!