The answer is 10.5 kg m/s
Impulse (I) is the multiplication of force (F) and time interval (Δt): I = F · Δt
Force (F) is the multiplication of mass (m) and acceleration (a): F = m · a
Acceleration (a) can be expressed as change in velocity (v) divided by time interval (Δt): a = Δv/Δt
So:
a = Δv/Δt ⇒ F = m · a = m · Δv/Δt
F = m · Δv/Δt ⇒ I = m · Δv/Δt · Δt
Since Δt can be cancelled out, impulse can be expressed as:
I = m · Δv = m · (v2 - v1)
It is given:
m = 1.5 kg
v1 = 15 m/s
v2 = 22 m/s
I = 1.5 · (22 - 15) = 1.5 · 7 = 10.5 kgm/s.
Answer:
height from where rock was thrown is 27.916 m
Explanation:
speed = 7.50 m/s
θ = 30°
g= 9.8 m/s²
horizontal distance = 18 m
time require for vertical displacement

t = 2.8 sec
now for calculation of height
s = ut + 0.5 a t²
-h = v sinθ× t + 0.5 ×(-9.8)× (2.8²)
-h = 7.5 sin30°× 2.8 - 0.5 ×(9.8)× (2.8²)
-h = -27.916 m
h= 27.916 m
height from where rock was thrown is 27.916 m
Answer:
What a medium-mass star becomes after a planetary nebula; a very bright, dense mass about the size of the planet Earth. ... The process that generates all of the energy that a star produces. Supernova. A Red Super Giant explodes into this when it runs out of elements to fuse together.
Explanation:
Answer:
the ratio of the heat rejected to the cold reservoir for the improved engine to that for the original engine is 0.68
Explanation:
Given information
initial efficiency, η
= 0.28
final efficiency, η
= 0.51
ratio of the heat rejected = (1 - η
)/(1 - η
)
= (1 - 0.51)/(1 - 0.28)
= 0.68