Answer:
The speed is 24 
Explanation:
A wave is a disturbance that propagates through a certain medium or in a vacuum, with transport of energy but without transport of matter.
The wavelength is the minimum distance between two successive points of the wave that are in the same state of vibration. It is expressed in units of length (m).
Frequency is the number of vibrations that occur in a unit of time. Its unit is s⁻¹ or hertz (Hz).
The speed of propagation is the speed with which the wave propagates in the middle, that is, the magnitude that measures the speed at which the wave disturbance propagates along its displacement. Relate wavelength (λ) and frequency (f) inversely proportionally using the following equation:
v = f * λ.
In this case, λ= 8 meter and f= 3 Hz
Then:
v= 3 Hz* 8 meter
So:
v= 24 
<u><em>The speed is 24 </em></u>
<u><em></em></u>
The value of cos θ in the given figure is 0.98.
<h3>
What is cosine of an angle?</h3>
The cosine of an angle is defined as the sine of the complementary angle.
The complementary angle equals the given angle subtracted from a right angle, 90.
cos θ = sin(90 - θ)
For example, if the angle is 30°, then its complement is 60°
cos 30 = sin(90 - 30)
cos 30 = sin 60
0.866 = 0.866
<h3>Cosine of an angle with respect to sides of a right triangle</h3>
cos θ = adjacent side / hypotenuse side
adjacent side of the given right triangle is calculated as follows;
adj² = 10² - 2²
adj² = 100 - 4
adj² = 96
adj = √96
adj = 9.8
cos θ = 9.8/10
cos θ = 0.98
Thus, the value of cos θ in the given figure is 0.98.
Learn more about cosine of angles here: brainly.com/question/23720007
#SPJ1
The kinetic energy of the tomato is :
K.E = 1/2 mv^2
K.E = 1/2 x 0.18 kg x 11 m/S^2
K.E = 0.99
Hope this helps
Answer:
An object has potential energy (stored energy) when it is not in motion. Once a force has been applied or it begins to move the potential energy changes to kinetic energy (energy of motion).
EXAMPLE: A rock sitting on the edge of a cliff. If the rock falls, the potential energy will be converted to kinetic energy, as the rock will be moving. A stretched elastic string in a longbow.
Answer:
Yes is large enough
Explanation:
We need to apply the second Newton's Law to find the solution.
We know that,

And we know as well that

Replacing the aceleration value in the equation force we have,

Substituting our values we have,


The weight of the person is then,


<em>We can conclude that force on the ball is large to lift the ball</em>