Given:
The initial volume of the gas, V₁=3200 ml=3.2×10⁻³ m³
The initial pressure of the gas, P₁=122 kPa
The initial temperature of the gas, T₁=27 °C=300 K
The final temperature, T₂=65 °C=338 K
The final pressure, P₂=112 kPa
To find:
The final volume of xenon gas.
Explanation:
From the combined gas law,

Where V₂ is the volume after it is heated.
On rearranging the above equation,

On substituting the known values,

Final answer:
The volume of the balloon when it is heated is 3.61 m³
Answer:
a = √ (a_t² + a_c²)
a_t = dv / dt
, a_c = v² / r
Explanation:
In a two-dimensional movement, the acceleration can have two components, one in each axis of the movement, so the acceleration can be written as the components of the acceleration in each axis.
a = aₓ i ^ + a_y j ^
Another very common way of expressing acceleration is by creating a reference system with a parallel axis and a perpendicular axis. The axis called parallel is in the radial direction and the perpendicular axis is perpendicular to the movement, therefore the acceleration remains
a = √ (a_t² + a_c²)
where the tangential acceleration is
a_t = dv / dt
the centripetal acceleration is
a_c = v² / r
The possible resulting chemical formulas for an ionic compound with calcium given the respective charges of the ions are: CaO, CaMg, or CaF₂ and CaO, CaF₂, or CaCl₂. This is because when dealing with these compounds, you simply need to interchange the oxidation state of the two elements and place as the subscript of the element. For instance, when we have Ca²⁺ and F⁻, the result is CaF₂. However, when the oxidation states of the two compounds are equal, the subscript is 1. That is, for Ca²⁺ and Mg²⁻, the result is CaMg. And for Ca²⁺ and Cl⁻, the result is CaCl₂.
Answer:
4 secs
Explanation:
The first step is to calculate the velocity
V= frequency × wavelength
= 500× 0.2
= 100
Therefore the time can be calculated as follows
= distance/velocity
= 400/100
= 4 secs
More dense. if an object takes up volume and is heavy, it has a high density.