Answer: A 100-lb child stands on a scale while riding in an elevator. Then, the scale reading approaches to 100lb, while the elevator slows to stop at the lowest floor
Explanation: To find the correct answer, we need to know more about the apparent weight of a body in a lift.
<h3>What is the apparent weight of a body in a lift?</h3>
- Consider a body of mass m kept on a weighing machine in a lift.
- The readings on the machine is the force exerted by the body on the machine(action), which is equal to the force exerted by the machine on the body(reaction).
- The reaction we get as the weight recorded by the machine, and it is called the apparent weight.
<h3>How to solve the question?</h3>
- Here we have given with the actual weight of the body as 100lbs.
- This 100lb child is standing on the scale or the weighing machine, when it is riding .
- During this condition, the acceleration of the lift is towards downward, and thus, a force of ma .
- There is also<em> mg </em>downwards and a normal reaction in the upward direction.
- when we equate both the upward force and downward force, we get,
i.e. during riding the scale reads a weight less than that of actual weight.
- When the lift goes slow and stops the lowest floor, then the acceleration will be approaches to zero.
Thus, from the above explanation, it is clear that ,when the elevator moves to the lowest floor slowly and stops, then the apparent weight will become the actual weight.
Learn more about the apparent weight of the body in a lift here:
brainly.com/question/28045397
#SPJ4
Answer:
The answer to your question is:
Explanation:
There are two kinds of cell transport passive transportation and active transportation.
Passive transportation does not need energy because molecules move from higher concentration to lower concentration.
Active transportation needs energy because molecules moves against concentration.
a. facilitated diffusion It's an example of passive transportation so this answer is wrong.
b. passive transport Molecules move in favor of concentration so this answer is wrong.
c. osmosis is another example of passive transport so this answer is wrong.
d. simple diffusion it's another example of passive transport, so it's wrong this answer.
e. active transport this is the right answer.
Answer:
1.4E-3J
Explanation:
Given that
Time = 8hrs = 28.8E3 seconds
Intensity= 90dB
D= 0.008m
Radius= 0.004m
So intensity is sound level Bis
10dBlog(I/Io)
I= 10 (B/10dB)Io
= 10( 90/10) x 10^-12
=0.001W/m²
But we know that
I = P/A
P= I πr²
= 5.02 x10^-8W
But energy is power x time
So E= 5.02E-8 x 28.8E3
= 1.4E-3J
Based on the information given, it can be inferred that the favor doesn't fall within the AAMA guidelines of her responsibilities.
From the information given, it should be noted that the guidelines of CMA as stipulated under the American Association of Medical Assistant prohibits the CMA from interpreting the medical data of the patient. Therefore, the favor that was asked by Dr. Hsu of Kayla is simply against the guidelines.
Even though the favor that was asked by Dr. Hsu was prohibited by AAMA, it should be noted that the final part of the favor about faxing the report to the internist would fall within AAMA guidelines.
In conclusion, the best way that Kayla can respond to Dr. Hsu is to decline doing the favor.
Read related link on:
I’m pretty sure 14 is mutations