Answer:
Q (reaction) = -69.7 kJ
Explanation:
Octane reacts with oxygen to give carbon dioxide and water.
C₈H₁₈ + 25 O₂ ---> 16 CO₂ +18 H₂O
This reaction is exothermic in nature. Therefore, the energy is released into the atmosphere. This reaction took place in a calorimeter, there the temperature (T) increases by 10 C. The heat capacity of the calorimeter is 6.97 kJ/C
The heat (q) of the reaction is calculated as follows:
Q= -cT, where c is the heat capacity of the calorimeter and T is the increase in temperature
q = -(6.97) x (10) = -69.7kJ
<em>Since the heat capacity is given in kilo -joule per degree Celsius, therefore, the mass of octane is not required </em>
Answer:
bchfdfu
<em>hjoufu</em><em> </em><em>I'm</em><em> not</em><em> sure</em><em> if</em><em> you</em><em> are</em><em> still</em><em> interested</em><em> in</em><em> the</em><em> position</em><em> and</em><em> would</em><em> like</em><em> to</em><em> know</em><em> if</em><em> you</em><em> are</em><em> interested</em>
Explanation:
what is the question? could you pls provide it
Frictional force and Applied force has same “magnitude” and “opposite” direction.
Option: B
<u>Explanation</u>:
When a book is moved horizontally by applying “force” on the book, the frictional force is opposed to the book by the table. Here, this “frictional force” is opposing the book has the same force what we applied on the book but this frictional force and the applied force are opposite in direction. Always the “frictional force” is opposite to the “applied force” which stops the object to move. For example, if a force applied leftward to the object the frictional force is acted on the right side of the object.
When two objects are in contact they experience a "frictional force". This "frictional force" acts opposite to the force applied on to move the object.
Formula for "frictional force" is 
Where,
is coefficient of friction and N is normal force.