The anion<span> is also </span>larger than<span> the </span>atom<span> because of </span>electron-electron repulsion<span>. As more </span>electrons are<span> added to the </span>outer shell<span>, and even to </span>higher<span> principle energy levels, the </span>repulsion<span> bewteen the negatively charged particles grows, pushing the </span>shells<span> farther from the nucleus.</span>
Answer:
m = 671 grams
Explanation:
Given that,
No of moles, n = 4.9
Molar mass of Barium, M = 137 g
Mass divided by molar mass is equal to no of moles. It can be given by the formula as follows :

or
m = 671 grams
So, the total mass of the sample of Barium is 671 grams.
Answer:
The rate at which the air temperature changes with height in the atmosphere surrounding a cloud or a rising parcel of air. The overall average rate is a decrease of about 6.5°C/km, but the rate varies greatly in different regions of the world, in different airstreams, and at different seasons of the year.
Answer:
−153.1 J / (K mol)
Explanation:
Calculate the standard entropy of reaction at 298 K for the reaction Hg(liq) + Cl2(g) → HgCl2(s) The standard molar entropies of the species at that temperature are: Sºm (Hg,liq) = 76.02 J / (K mol) ; Sºm (Cl2,g) = 223.07 J / (K mol) ; Sºm (HgCl2,s) = 146.0 J / (K mol)
Hg(liq) + Cl2(g) → HgCl2(s)
Given that;
The standard molar entropies of the species at that temperature are:
Sºm (Hg,liq) = 76.02 J / (K mol) ;
Sºm (Cl2,g) = 223.07 J / (K mol) ;
Sºm (HgCl2,s) = 146.0 J / (K mol)
The standard molar entropies of reaction = Sºm[products] - Sºm [ reactants]
= 146.0 J / (K mol) – [76.02 J / (K mol) +223.07 J / (K mol) ]
= -153.09 J / (K mol)
= or -153.1 J / (K mol)
Hence the answer is −153.1 J / (K mol)