Answer:
true, they both have different types of DNA.
Answer:
(a) adding 0.050 mol of HCl
Explanation:
A buffer is defined as the mixture of a weak acid and its conjugate base -or vice versa-.
In the buffer:
1.0L × (0.10 mol / L) = 0.10 moles of HF -<em>Weak acid-</em>
1.0L × (0.050 mol / L) = 0.050 moles of NaF -<em>Conjugate base-</em>
-The weak acid reacts with bases as NaOH and the conjugate base reacts with acids as HCl-
Thus:
<em>(a) adding 0.050 mol of HCl:</em> The addition of 0.050moles of HCl produce the reaction of 0.050 moles of NaF producing HF. That means after the reaction, all NaF is consumed and you will have in solution just the weak acid <em>destroying the buffer</em>.
(b) adding 0.050 mol of NaOH: The NaOH reacts with HF producing more NaF. Would be consumed just 0.050 moles of HF -remaining 0.050 moles of HF-. Thus, the buffer <em>wouldn't be destroyed</em>.
(c) adding 0.050 mol of NaF: The addition of conjugate base <em>doesn't destroy the buffer</em>
Answer:
The median would be 6700
Explanation:
Arrange data values from lowest to highest value
The median is the data value in the middle of the set
.
Ordering a data set x1 ≤ x2 ≤ x3 ≤ ... ≤ xn from lowest to highest value, the median x˜ is the data point separating the upper half of the data values from the lower half.
If the size of the data set n is odd the median is the value at position p where
Formula for the median
p=n+12
x˜=xp
If n is even the median is the average of the values at positions p and p + 1 where
p=n2
x˜=xp+xp+12
If there are 2 data values in the middle the median is the mean of those 2 values.
To work it out, you divide 240 by 100 to work out 1% of it, then multiply that by 95 to work out 95% of it. So
(240/100) * 95 = 228mL
Answer:
Assume that the sack was initially close to the sea level. Its weight will increase even though its mass stays the same.
Explanation:
The weight of an object typically refers to the size of the planet's gravitational attraction (a force) on this object. That's not the same as the mass of the object. The weight of an object at a position depends on the size of the gravitational field there; on the other hand, the mass of the object is supposed to be same regardless of the location- as long as the object stays intact.
Let
denote the strength of the gravitational field at a certain point. If the mass of an object is
, its weight at that point will be
.
Indeed,
on many places of the earth. However, this value is accurate only near the sea level. The equation for universal gravitation is a more general way for finding the strength of the gravitational field at an arbitrary height. Let
denote the constant of universal gravitation, and let
denote the mass of the earth. At a distance
from the center of the earth (where
.
The elevation of many places in Bhutan are significantly higher than that of many places in India. Therefore, a sack of potato in Bhutan will likely be further away from the center of the earth (larger
) compared to a sack of potato in India.
Note, that in the approximation, the value of
is (approximately, because the earth isn't perfectly spherical) inversely proportional to the distance from the center of the planet. The gravitational field strength
On the other hand, the weight of an object of fixed mass is proportional to the gravitational field strength. Therefore, the same bag of potatoes will have a smaller weight at most places in Bhutan compared to most places in India.