Answer:
The production of heat, light, or smoke is observed.
Answer:
46g of sodium acetate.
Explanation:
The data is: <em>Precipitation from a supersaturated sodium acetate solution. The solution on the left was formed by dissolving 156g of the salt in 100 mL of water at 100°C and then slowly cooling it to 20°C. Because the solubility of sodium acetate in water at 20°C is 46g per 100mL of water, the solution is supersaturated. Addition of a sodium acetate crystal causes the excess solute to crystallize from solution.</em>
The third solution is the result of the equilibrium in the solution at 20°C. As the maximum quantity that water can dissolve of sodium acetate at this temperature is 46g per 100mL and the solution has 100mL <em>there are 46g of sodium acetate in solution. </em>The other sodium acetate precipitate because of decreasing of temperature.
I hope it helps!
Answer:
0.00230 = <u>3 significant figures</u>
Explanation:
Significant digits or figures of a given number are the digits or figures that have meaning and contributes to the precision of the given number.
Therefore, <u>0.00230 = 3 significant figures.</u>
Reason: The non-zeros figures and the trailing zero after the decimal are significant. Whereas, all the leading zeros are not considered significant.
Answer:
Q = 30284.88 j
Explanation:
Given data:
Mass of ethanol = 257 g
Cp = 2.4 j/g.°C
Chnage in temperature = ΔT = 49.1°C
Heat required = ?
Solution:
Specific heat capacity:
It is the amount of heat required to raise the temperature of one gram of substance by one degree.
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
Now we will put the values in formula.
Q = 257 g× 2.4 j/g.°C × 49.1 °C
Q = 30284.88 j