Answer:
The procedure for calculating the pH of a solution of a weak base is similar to that of the weak acid in the sample problem. However, the variable x will represent the concentration of the hydroxide ion. The pH is found by taking the negative logarithm to get the pOH, followed by subtracting from 14 to get the pH.
Explanation:
Answer:
The answer to your question is: letter E
Explanation:
A. This option is correct, the n = 3 shell only has subshells: s, p and d, and shell n = 4 or 5 have f subshell.
B. This option is true in subshell p could be at most 6 electrons and 3 suborbitals.
C. This option is correct orbital "s" is a sphere.
D. This option is correct, in subshell d could be at most 10 electrons and 5 orbitals.
E. This option is false, hydrogen only has 1 electron and then one subshell (s).
Hey there!:
Molar mass AgNO3 = 169.87 g/mol
Number of moles:
moles of solution = mass of solute / molar mass
moles of solution = 18.7 / 169.87
moles of solution = 0.110084 moles of AgNO3
Volume in liters:
250.0 mL / 1000 => 0.25 L
Therefore:
Molarity = moles of solution / Volume of solution ( L )
Molarity = 0.110084 / 0.25
=> 0.440 M
Hope that helps!
Answer:
See attached picture.
Explanation:
Hello.
In this case, since butane has two common occurring structures, n-butane and isobutane, there is a way in which the tert-butyl radical can be formed upon the removal of a hydrogen from the isobutane form of butane as shown on the attached picture, wherein you can see that the radical is named by "tert" since the central carbon is bonded to three carbon atoms, that is why we classify it as tertiary. Moreover, it is a radical due to the presence of the bolded dot next to the tertiary carbon suggesting that it is very likely to bond with an other atom.
Best regards.