Answer:
concentration of
= 0.0124 = 12.4 ×10⁻³ M
concentration of
= 0.0248 = 2.48 ×10⁻² M
concentration of
= 0.4442 M
Explanation:
Equation for the reaction:
⇄
+ ![O_2_{(g)](https://tex.z-dn.net/?f=O_2_%7B%28g%29)
Concentration of
=
= 0.469
For our ICE Table; we have:
⇄
+ ![O_2_{(g)](https://tex.z-dn.net/?f=O_2_%7B%28g%29)
Initial 0.469 0 0
Change - 2x +2x +x
Equilibrium (0.469-2x) 2x x
K = ![\frac{[CO]^2[O]}{[CO_2]^2}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BCO%5D%5E2%5BO%5D%7D%7B%5BCO_2%5D%5E2%7D)
K = ![\frac{[2x]^2[x]}{[0.469-2x]^2}](https://tex.z-dn.net/?f=%5Cfrac%7B%5B2x%5D%5E2%5Bx%5D%7D%7B%5B0.469-2x%5D%5E2%7D)
![4.1*10^{-6}=\frac{2x^3}{(0.469-2x)^2}](https://tex.z-dn.net/?f=4.1%2A10%5E%7B-6%7D%3D%5Cfrac%7B2x%5E3%7D%7B%280.469-2x%29%5E2%7D)
Since the value pf K is very small, only little small of reactant goes into product; so (0.469-2x)² = (0.469)²
![4.1*10^{-6} = \frac{2x^3}{(0.938)}](https://tex.z-dn.net/?f=4.1%2A10%5E%7B-6%7D%20%3D%20%5Cfrac%7B2x%5E3%7D%7B%280.938%29%7D)
![2x^3 =3.8458*10^{-6](https://tex.z-dn.net/?f=2x%5E3%20%3D3.8458%2A10%5E%7B-6)
![x^3 =\frac{3.8458*10^{-6}}{2}](https://tex.z-dn.net/?f=x%5E3%20%3D%5Cfrac%7B3.8458%2A10%5E%7B-6%7D%7D%7B2%7D)
![x^3=1.9229*10^{-6](https://tex.z-dn.net/?f=x%5E3%3D1.9229%2A10%5E%7B-6)
![x=\sqrt[3]{1.9929*10^{-6}}](https://tex.z-dn.net/?f=x%3D%5Csqrt%5B3%5D%7B1.9929%2A10%5E%7B-6%7D%7D)
x = 0.0124
∴ at equilibrium; concentration of
= 0.0124 = 12.4 ×10⁻³ M
concentration of
= 2x = 2 ( 0.0124)
= 0.0248
= 2.48 ×10⁻² M
concentration of
= 0.469-2x
= 0.469-2(0.0124)
= 0.469 - 0.0248
= 0.4442 M