Complete Question:
Ions to calculate the p-values: Na⁺, Cl⁻, and NH₄⁺
Answer:
pNa = 0.307
pCl = 0.093
pNH₄ = 0.503
Explanation:
The p-value is calculated by the antilog of the concentration of the substance of interest. For example, pH = -log[H⁺]. Thus, first, let's find the ions concentration.
Both substances are salts that solubilize completely, thus, by the solution reactions:
NaCl → Na⁺ + Cl⁻
NH₄Cl → NH₄⁺ + Cl⁻
So, for both reactions the stoichiometry is 1:1:1 and the concentration of the ions is equal to the concentration of the salts.
[Na⁺] = 0.493 M
[Cl⁻] = 0.493 + 0.314 = 0.807 M
[NH₄⁺] = 0.314 M
The p-values are:
pNa = -log[Na⁺] = -log(0.493) = 0.307
pCl = -log[Cl⁻] = -log(0.807) = 0.093
pNH₄ = -log[NH₄⁺] = -log(0.314) = 0.503
The glass opposite to the negative electrode started to glow. Hence, option B is correct.
<h3>What is a cathode ray tube?</h3>
A cathode-ray tube (CRT) is a specialized vacuum tube in which images are produced when an electron beam strikes a phosphorescent surface.
J.J. Thomson, through his famous Cathode ray experiment, proved that all atoms contain small negatively charged particles known as electrons. In the experiment, he applied electric voltage across a cathode ray tube. a fluorescent material coating was done on the positive side. When the voltage was applied, the positive side has glowing dots.
Hence, option B is correct.
Learn more about the cathode ray tube here:
brainly.com/question/14409449
#SPJ1
Answer:
Explanation: I think its 4.91 x 10^25. Im not very sure, i just multipled 1.15 mol by the molar mass of Cl 2, which was 70.9 g. Then I multiplied that by avogadro's number. sorry if im wrong
Explanation:
As it is known that in solids, molecules are held together because of strong intermolecular forces of attraction. As a result, they are held together and have definite shape and volume.
Whereas in liquids, molecules are not held so strongly as they are in solids. Hence, they move from their initial position and they do not have definite shape but they have definite volume.
Liquids obtain the shape of container in which they are kept.
In gases, molecules are held together by weak intermolecular forces. As a result, they move far apart from each other and occupy the space of a container or vessel in which they are placed.
The physical state (at room temperature) of the following are determined as follows:
(a) Helium in a toy balloon : Helium at room temperature exists as a gas. So, when helium is present in a toy balloon then it acquires the volume of toy balloon.
(b) Mercury in a thermometer : Mercury at room temperature exists as a liquid. When it is placed in a thermometer then volume of mercury does not get affected.
(c) Soup in a bowl : Since, soup is a liquid. Hence, its volume will not change according to the volume of container.