Answer:- 123 amu.
Solution:- The formula to calculate the average atomic mass of an atom is:
Average atomic mass = mass of first isotope(abundance of first isotope) + mass of second isotope(abundance of second isotope)
Note: The percent abundance is converted to decimals.
mass of Sb-121 is 121 amu and it's percent abundance is 57.3% and in decimal it is 0.573. Percent abundance of Sb-123 is 42.8% and in decimal it is 0.428. We are asked to calculate it's mass. The average atomic mass of Sb is given as 122.
Let's say the mass of Sb-123 is M and plug in the values in the formula and do calculations:
122 = 121(0.573) + M(0.428)
122 = 69.333 + M(0.428)
On rearrangement:-
M(0.428) = 122 - 69.333
M(0.428) = 52.667

M = 123
So, the mass of Sb-123 is 123 amu.
Structure 1 is satisfying octet rule because each atom surrounded by 8 electrons:
The valance electron for oxygen is 6, for sulfur is 6, but for hydrogen is 1. Therefore, the molecule has <span>valance electrons. Sulfur is bonded with 4 oxygen atoms, 4 single bonds, whereas 2 hydrogen atoms are bonded with 2 oxygen atoms.
But the actual structure is 2 but it violates octet rule since S is surrounded in this case with 12 electrons
</span>
Answer:
C₆H₆O₃
Explanation:
Calculation sequence:
% => grams => moles => reduce => empirical Ratio
Molecular multiple = Molecular Mass / Empirical Mass
C: => 57.1% => 57.1 g => 57.1/12 = 4.7583
H: => 4.8% => 4.8 g => 4.8/1 = 4.8000
O: => <u>38.1% => 38.1 g </u>=> 38.1/16 = 2.3813
TTL => 100% 100 g
Reduced Mole values =>
C : H : O => 4.7583/2.3813 : 4.8000/2.3813 : 2.3813/2.3813 => 2 : 2 : 1
∴ empirical formula => C₂H₂O
empirical formula weight => 2C + 2H + 1O = [2(12) + 2(1) + 1(16)] amu = 42 amu
molecular formula weight (given in problem) = 126 g/mole
The molecular formula is a whole number multiple of the empirical formula.
molecular multiple = 126 amu / 42 amu = 3
∴ molecular formula => (C₂H₂O)₃ => C₆H₆O₃
Vapour pressure of system depends upon intermolecular forces of interaction. Greater the interaction, larger will the vapour pressure, more will be the boiling point.
Answer 1:
CH4 stands for methane and CH3Cl named as chloromethane. In methane, all the valances of C atom is satisfied by hydrogen. Due to this, it has zero dipole moment. While, in case of CH3Cl, one of the valance is satisfied by an electronegative element i.e. Cl. Due to this, it acquires a polar character. Also, it has a net dipole moment. Due to this, CH3Cl exhibits dipole-dipole intermolecular force of attraction, which is absent in CH4. Hence, CH3Cl has lower vapor pressure as compared to CH4.
Answer 2:
H2CO is named as formaldehyde, while CH3OH is named as methyl alcohol. In case of methyl alcohol, hydrogen atom (an electropositive atom) is bonded to oxygen (a highly electronegative element). This is absent in case of formaldehyde. Due the this, methyl alcohol as greater polarity as compared to formaldehyde. Due the greater polarity, vapour pressure of CH3OH is less as compared to H2CO.
Answer 3:
<span>CH3CH2CH2OH is named as propanol or propyl alcohol. Propyl alcohol, has longer chain length as compared to methyl alcohol (CH3OH). Both of this compounds has a polar character due to presence of -OH functional group. However, due to long chain of propyl alcohol, polar character increases. This can be attributed the +I effect of CH3 group. Due to this, intermolecular forces of interaction are higher in propanol, thereby decreasing its vapor pressure as compared to methanol. </span>