Answer:
Real life example of parallel lines are railroad tracks and rows in a garden. Also the lines on a basketball court are parallel so basically C if im positive
Step-by-step explanation:
Some examples include the structural frames of buildings, railroad tracks, windows (opposite sides), sailboats, steps, and paper.
parallel bars in men's gymnastics
Also anything that is shaped as a rhombus, square or a rectangle. ( added by a.m.b.)
You have not provided the diagram/coordinates for point Q, therefore, I cannot provide an exact answer.
However, I can help you with the concept.
When rotating a point 90° counter clock-wise, the following happens:
coordinates of the original point: (x,y)
coordinates of the image point: (-y,x)
Examples:
point (2,5) when rotated 90° counter clock-wise, the coordinates of the image would be (-5,2)
point (1,9) when rotated 90° counter clock-wise, the coordinates of the image would be (-9,1)
point (7,4) when rotated 90° counter clock-wise, the coordinates of the image would be (-4,7)
Therefore, for the given point Q, all you have to do to get the coordinates of the image is apply the transformation:
(x,y) .............> are changed into.............> (-y,x)
Hope this helps :)
The question is somewhat poorly posed because the equation doesn't involve <em>θ</em> at all. I assume the author meant to use <em>x</em>.
sec(<em>x</em>) = csc(<em>x</em>)
By definition of secant and cosecant,
1/cos(<em>x</em>) = 1/sin(<em>x</em>)
Multiply both sides by sin(<em>x</em>) :
sin(<em>x</em>)/cos(<em>x</em>) = sin(<em>x</em>)/sin(<em>x</em>)
As long as sin(<em>x</em>) ≠ 0, this reduces to
sin(<em>x</em>)/cos(<em>x</em>) = 1
By definition of tangent,
tan(<em>x</em>) = 1
Solve for <em>x</em> :
<em>x</em> = arctan(1) + <em>nπ</em>
<em>x</em> = <em>π</em>/4 + <em>nπ</em>
(where <em>n</em> is any integer)
In the interval 0 ≤ <em>x</em> ≤ 2<em>π</em>, you get 2 solutions when <em>n</em> = 0 and <em>n</em> = 1 of
<em>x</em> = <em>π</em>/4 <u>or</u> <em>x</em> = 5<em>π</em>/4
The formula for the sum of n terms in an arithmetic progression is:
S = n/2 * (2a + (n-1)d)
Here, the common difference, d, is 8 and the first term, a, is 1. Substituting these into the formula, we get:
S = n/2 * (2*1 + 8(n - 1))
S = n + 4n² - 4n
S = 4n² - 3n
The answer is A.