Density is mass divided by volume. rho=m/v. So, v=m/rho. In frank's case this is 80/8 = 10 cm^3.
Differentiation in its simplest of terms means breaking something into small parts. On the other hand, integration is taking those really small parts and gluing them in the right order. In short, these terms are the direct opposite or inverses of each other. The term which can tell you how fast you are going at a moment in time at ones current location is called a derivative. The term on the other hand, which can tell you how far you have travelled if you have been keeping track of your location and your time is what an integral is referred to. It is like differentiation only needs knowledge on the local neighbourhood while integration will need the knowledge on a global knowledge.
<span>The three states of matter are the three distinct physical forms that matter can take in most environments: solid, liquid, and gas. In extreme environments, other states may be present, such as plasma, Bose-Einstein condensates, and neutron stars. Further states, such as quark-gluon plasmas, are also believed to be possible. Much of the atomic matter of the universe is hot plasma in the form of rarefied interstellar medium and dense stars.</span>
The answer is C! I knew this way before taking the test
Answer:
m= 10 kg a = 52 m / s²
Explanation:
For this problem we must use Newton's second law, let's apply it to each axis
X axis
F - fr = ma
The equation for the force of friction is
-fr = miu N
Axis y
N- W = 0
N = mg
Let's replace and calculate laceration
F - miu (mg) = ma
a = F / m - mi g
a = 527.018 / m - 0.17 9.8
We must know the mass of the body suppose m = 10 kg
a = 527.018 / 10 - 1,666
a = 52 m / s²