Answer:

Explanation:
(The following exercise is written in Spanish and for that reason explanation will be held in Spanish)
Supóngase que el planeta tiene una órbita circular, el período de rotación del planeta es:

Asimismo, la rapidez angular se describe como función de la aceleración centrípeta:

Ahora se reemplaza en la ecuación de período:

La aceleración experimentada por el planeta es:

Se reemplaza en la ecuación de período:

La distancia del planeta con respecto al sol es finalmente despejada:

![R = \sqrt[3]{G\cdot M_{sun}\cdot \left(\frac{T}{2\pi} \right)^{2}}](https://tex.z-dn.net/?f=R%20%3D%20%5Csqrt%5B3%5D%7BG%5Ccdot%20M_%7Bsun%7D%5Ccdot%20%5Cleft%28%5Cfrac%7BT%7D%7B2%5Cpi%7D%20%5Cright%29%5E%7B2%7D%7D)
Finalmente, se sustituyen las variables y se determina la distancia:
![R = \sqrt[3]{\left(6.674\times 10^{-11}\,\frac{N\cdot m^{2}}{kg^{2}} \right)\cdot (1.989\times 10^{30}\,kg)\cdot \left[\frac{(65\,a)\cdot \left(365\,\frac{d}{a} \right)\cdot \left(86400\,\frac{s}{d} \right)}{2\pi} \right]^{2}}](https://tex.z-dn.net/?f=R%20%3D%20%5Csqrt%5B3%5D%7B%5Cleft%286.674%5Ctimes%2010%5E%7B-11%7D%5C%2C%5Cfrac%7BN%5Ccdot%20m%5E%7B2%7D%7D%7Bkg%5E%7B2%7D%7D%20%5Cright%29%5Ccdot%20%281.989%5Ctimes%2010%5E%7B30%7D%5C%2Ckg%29%5Ccdot%20%5Cleft%5B%5Cfrac%7B%2865%5C%2Ca%29%5Ccdot%20%5Cleft%28365%5C%2C%5Cfrac%7Bd%7D%7Ba%7D%20%5Cright%29%5Ccdot%20%5Cleft%2886400%5C%2C%5Cfrac%7Bs%7D%7Bd%7D%20%5Cright%29%7D%7B2%5Cpi%7D%20%5Cright%5D%5E%7B2%7D%7D)


Answer:
oop i cant see the anwer choices correctly
Explanation:
This shows the sunlight shining on the moon is creating a shadow. The part of the shadow that we don’t see from Earth is called the eclipse. Since the Earth gets a shadow from the moon, that causes the rest of the Earth to light up which causes a lunar eclipse.
Explanation:
Answer:

Explanation:
Power rating of a solar panel is 1.50 KW/m²
It generates 2.50 MJ in an hour.
We need to find the area of this type of solar panel would be needed. The power pertaining to generate this energy is given by :

Let A be the area of the solar panel. It is calculated as follows :

So, the required area of the solar panel is
.