Answer:
An object at rest does not move and an object in motion does not change its velocity, unless an external force acts upon it
Explanation:
This statement is also known as Newton's first law, or law of inertia.
It states that the state of motion of an object can be changed only if there is an external force (different from zero) acting on it: therefore
- If an object is at rest, it will remain at rest if there is no force acting on it
- If an object is moving, it will continue moving at constant velocity if there is no force acting on it
This phenomenon can be also understood by looking at Newton's second law:
F = ma
where
F is the net force on an object
m is the mass
a is the acceleration
If the net force is zero, F = 0, the acceleration of the object is also zero, a = 0: therefore, the velocity of the object does not change, and it will continue moving at the same velocity (which can be zero, if the object was at rest).
Answer:
12 units
Explanation:
This problem can be solved if we take into account the equation for a sphere

where we took that the radius is 13 units. If we take z=5 and we replace this value in the equation of the sphere we have

where we have taken x2 +y2 because if the equation of a circunference.
In this case the intersection is made when we take z=5, for this value the sphere and the plane coincides in values.
Hence, the radius is 12 units
I hope this is useful for you
regards
Answer:
The change in current at
is 
Explanation:
From the question we are told that
The resistance is 
The current is 
The change in voltage with respect to time is 
The change in resistance with time is 
According to ohm's law

differentiating with respect to time using chain rule

substituting value at R = 456


<span>Is it true that nighttime air temperatures on a cloudy night are lower than they would be on a clear night?</span>
<span>A baseball speeds up as it falls through the air.
Yes. Forces on the balloon are unbalanced.
The balloon is speeding up, so we know that the downward force
of gravity is stronger than the upward force of air resistance.
A soccer ball is at rest on the ground.
No. The ball is not accelerating, so we know that the forces on it
are balanced.
The downward force of gravity on the ball and the upward force
of the ground are equal.
An ice skater glides in a straight line at a constant speed.
No. The skater's speed and direction are not changing, so he is not
accelerating. That tells us that the forces on him are balanced.
A bumper car hit by another car moves off at an angle.
Yes. The direction in which the car was moving changed.
That's acceleration, so we know that the forces on it are unbalanced,
at least at the moment of impact.
A balloon flies across the room when the air is released.
Yes. The balloon was not moving. But when the little nozzle was
opened, it started to zip around the room. So its speed changed.
And, as it goes bloozing around the room, its direction keeps changing too.
There's a whole lot of acceleration going on, so we know the forces on it
are unbalanced.</span>