We are going to use this equation:
ΔT = - i m Kf
when m is the molality of a solution
i = 2
and ΔT is the change in melting point = T2- 0 °C
and Kf is cryoscopic constant = 1.86C/m
now we need to calculate the molality so we have to get the moles of NaCl first:
moles of NaCl = mass / molar mass
= 3.5 g / 58.44
= 0.0599 moles
when the density of water = 1 g / mL and the volume =230 L
∴ the mass of water = 1 g * 230 mL = 230 g = 0.23Kg
now we can get the molality = moles NaCl / Kg water
=0.0599moles/0.23Kg
= 0.26 m
∴T2-0 = - 2 * 0.26 *1.86
∴T2 = -0.967 °C
To find AH°rxn, we use the following equation:
What we're going to do is to sum the enthalpy of the products and then substract with the enthalpy of the reactives:
As you can see, we need to multiply by the coefficients of the reaction.
Now, just replace the values of the table:
So the answer is -822.2kJ/mol.
For b:
Now, just replace the values of the table:
The answer for b is -1036kJ/mol.
Answer:
Please find the explanation to this question below.
Explanation:
Answer:
If it has to do with heat, it's thermal. ... The Greek word therme, meaning “heat,” is the origin of the adjective thermal. Something that is thermal is hot, retains heat, or has a warming effect.
Explanation:
hope it helps :)