Answer:
from the way I understand the question I think the answer is (B)
Explanation:
Because the distribution into shells of oxygen is 2,6 and in sulfur is 2,8,6 and oxygen has a 8th number of electrons and sulfur has the 16th number of electrons
Answer: Melting point and boiling point
Explanation:
Chemical Reaction
Answer:
Al4C3 + 12H2O = 3CH4 + 4Al(OH)3
Explanation:
Not sure if any explanation is needed but always start with the most complex compound. In this case it is Al(OH)3. You can see that there is 4 Aluminiums on the other side so I would start by putting a 4 next to the Al(OH)3. This now gives me 12 Hydrogens and 12 Oxygens on the right side. I put a 3 next to the CH4 to balance the Carbons on the left side. This leaves me with 12 Oxygens and 24 Hydrogens on the right side. This ends up being perfect because I can put a 12 next to the H2O.
The concentration of each of the individual ions in a 0750 M Ba(OH)2 solution is
[Ba2+] = 0.750 M
[OH-]= 1.50 M
<h3>
calculation</h3>
write the equation for dissociation
that is Ba(OH)2 (s)→ Ba2+(aq) + 2OH-(aq)
by use of mole ratio of Ba(OH)2 : Ba2+ which is 1: 1 the concentration of Ba2+ is therefore= 0.750M
by use of mole ratio of Ba(OH)2 : OH- which is 1:2 the concentration of OH- =0.750 M x2/1=1.50 M
I am assuming that the problem ask for the pressure in
the system. To be able to calculate this, we first assume that the system acts
like an ideal gas, then we can use the ideal gas equation to find for pressure
P.
P V = n R T
where,
P = Pressure (unknown)
V = 0.17 m^3
n = moles of lng / methane
R = gas constant = 8.314 Pa m^3 / mol K
T = 200 K
We find for the moles of lng. Molar mass of methane = 16
kg / kmol
n = 55 kg / 16 kg / kmol
n = 3.44 kmol CH4 = 3440 mol
Substituting all the values to the ideal gas equation:
P = 3440 mol * (8.314 Pa m^3 / mol K) * 200 K / 0.17 m^3
P = 33,647,247 Pa
<span>P = 33.6 MPa</span>