The work done to push the refrigerator is 500 Nm.
Explanation:
Work done is the measure of force required to move any object from one point to another. So it is calculated as the product of force and displacement.
If the force increases the work done will increase and similarly, the increase in displacement increases the work done. So to push the refrigerator work should be done on the object and not by the object.
As the force is 100 N and the displacement is 5 m then, work done can be measured as
Work = Force × Displacement
Work = 100 × 5 = 500 Nm
So the work done to push the refrigerator is 500 Nm.
Answer:
Explanation:
the center of mass formula
Ycm= [(m₁y₁) + (m₂y₂) + (m₃y₃)] / (m₁+m₂+m₃)
Rope forms the x axis and position of centre of different massses are above or below it so they represent their location on y - axis.
y₁ = 1.6 , y₂ = .7 and y₃ = - 2.1
Ycm ( given ) = - .5
Putting the values of masses and positions
- .5 = 80 x 1.6 + 20 x .7 + m₃ x - 2.1 / ( 80 + 20 + m₃ )
- .5 = 128 + 14 + m₃ x - 2.1 / ( 100+ m₃ )
- 50 - .5 m₃ = 142 - 2.1 m₃
1.6 m₃ = 192
m₃ = 120 kg .
B )
Total downward force is weight of total mass = 80 + 20 + 120
= 220 kg
weight = 220 x 9.8 = 2156 N .
component of weight perpendicular to rope
= 2156 cos 15 = 2082.53 N
This force will be equally distributed over each tree , so force on each tree = 2082.53 / 2 = 1041.26 N .
<h2>
Power of cheetah is 5576.85 W = 7.48 hp</h2>
Explanation:
Power is the ratio of energy to time.
Here we need to consider kinetic energy,
Mass, m = 102 kg
Initial velocity = 0 m/s
Final velocity = 16.2 m/s
Time, t = 2.4 s
Initial kinetic energy = 0.5 x Mass x Initial velocity² = 0.5 x 102 x 0² = 0 J
Final kinetic energy = 0.5 x Mass x Final velocity² = 0.5 x 102 x 16.2² = 13384.44 J
Change in energy = Final kinetic energy - Initial kinetic energy
Change in energy = 13384.44 - 0
Change in energy = 13384.44 J
Power = 13384.44 ÷ 2.4 = 5576.85 W = 7.48 hp
Power of cheetah is 5576.85 W = 7.48 hp
Answer:
a) v₃ = 19.54 km, b) 70.2º north-west
Explanation:
This is a vector exercise, the best way to solve it is finding the components of each vector and doing the addition
vector 1 moves 26 km northeast
let's use trigonometry to find its components
cos 45 = x₁ / V₁
sin 45 = y₁ / V₁
x₁ = v₁ cos 45
y₁ = v₁ sin 45
x₁ = 26 cos 45
y₁ = 26 sin 45
x₁ = 18.38 km
y₁ = 18.38 km
Vector 2 moves 45 km north
y₂ = 45 km
Unknown 3 vector
x3 =?
y3 =?
Vector Resulting 70 km north of the starting point
R_y = 70 km
we make the sum on each axis
X axis
Rₓ = x₁ + x₃
x₃ = Rₓ -x₁
x₃ = 0 - 18.38
x₃ = -18.38 km
Y Axis
R_y = y₁ + y₂ + y₃
y₃ = R_y - y₁ -y₂
y₃ = 70 -18.38 - 45
y₃ = 6.62 km
the vector of the third leg of the journey is
v₃ = (-18.38 i ^ +6.62 j^ ) km
let's use the Pythagorean theorem to find the length
v₃ = √ (18.38² + 6.62²)
v₃ = 19.54 km
to find the angle let's use trigonometry
tan θ = y₃ / x₃
θ = tan⁻¹ (y₃ / x₃)
θ = tan⁻¹ (6.62 / (- 18.38))
θ = -19.8º
with respect to the x axis, if we measure this angle from the positive side of the x axis it is
θ’= 180 -19.8
θ’= 160.19º
I mean the address is
θ’’ = 90-19.8
θ = 70.2º
70.2º north-west
Answer:
A wave can be described as a disturbance that travels through a medium from one location to another location.
Explanation: